The Quantitative Isoperimetric Inequality for Planar Convex Domains

Carlo Nitsch

Bollettino dell'Unione Matematica Italiana (2008)

  • Volume: 1, Issue: 3, page 573-589
  • ISSN: 0392-4041

Abstract

top
We prove that among all the convex bounded domains in 2 having an assigned Fraenkel asymmetry index, there exists only one convex set (up to a similarity) which minimizes the isoperimetric deficit. We show how to construct this set. The result can be read as a sharp improvement of the isoperimetric inequality for convex planar domains.

How to cite

top

Nitsch, Carlo. "The Quantitative Isoperimetric Inequality for Planar Convex Domains." Bollettino dell'Unione Matematica Italiana 1.3 (2008): 573-589. <http://eudml.org/doc/290467>.

@article{Nitsch2008,
abstract = {We prove that among all the convex bounded domains in $\mathbb\{R\}^2$ having an assigned Fraenkel asymmetry index, there exists only one convex set (up to a similarity) which minimizes the isoperimetric deficit. We show how to construct this set. The result can be read as a sharp improvement of the isoperimetric inequality for convex planar domains.},
author = {Nitsch, Carlo},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {573-589},
publisher = {Unione Matematica Italiana},
title = {The Quantitative Isoperimetric Inequality for Planar Convex Domains},
url = {http://eudml.org/doc/290467},
volume = {1},
year = {2008},
}

TY - JOUR
AU - Nitsch, Carlo
TI - The Quantitative Isoperimetric Inequality for Planar Convex Domains
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/10//
PB - Unione Matematica Italiana
VL - 1
IS - 3
SP - 573
EP - 589
AB - We prove that among all the convex bounded domains in $\mathbb{R}^2$ having an assigned Fraenkel asymmetry index, there exists only one convex set (up to a similarity) which minimizes the isoperimetric deficit. We show how to construct this set. The result can be read as a sharp improvement of the isoperimetric inequality for convex planar domains.
LA - eng
UR - http://eudml.org/doc/290467
ER -

References

top
  1. ALVINO, A. - FERONE, V. - NITSCH, C., The sharp isoperimetric inequality in the plane, preprint (2008). Zbl1219.52006MR2735080DOI10.4171/JEMS/248
  2. ALVINO, A. - LIONS, P.-L. - TROMBETTI, G., On optimization problems with prescribed rearrangements, Nonlinear Anal., Theory Methods Appl.13 (1989), no. 2, 185-220. Zbl0678.49003MR979040DOI10.1016/0362-546X(89)90043-6
  3. BANDLE, C., Isoperimetric inequalities and applications, Monographs and Studies in Mathematics, 7. Boston, London, Melbourne: Pitman Advanced Publishing Program. X, 228 p., 1980. Zbl0436.35063MR572958
  4. BLASCHKE, W., Kreis und Kugel, Leipzig: Veit u. Co., X u. 169 S. gr. 8°, 1916. MR77958
  5. BONNESEN, T., Über eine Verscharfung der isoperimetrischen Ungleichheit des Kreises in der Ebene und auf der Kugeloberfläche nebst einer Anwendung auf eine Minkowskische Ungleichheit für konvexe Körper, Math. Ann.84 (1921), no. 3-4, 216-227. Zbl48.0591.03MR1512031DOI10.1007/BF01459405
  6. BONNESEN, T., Über das isoperimetrische Defizit ebener Figuren, Math. Ann.91 (1924), no. 3-4, 252-268. MR1512192DOI10.1007/BF01556082
  7. BONNESEN, T., Les problèmes des isopérimètres et des isépiphanes, 175 p. Paris, Gauthier-Villars (Collection de monographies sur la théorie des fonctions), 1929. 
  8. BURAGO, YU. D. - ZALGALLER, V.A., Geometric inequalities. Transl. from the Russian by A. B. Sossinsky. Transl. from the Russian by A.B. Sossinsky, Grundlehren der Mathematischen Wissenschaften, 285. Berlin etc.: Springer-Verlag. XIV, 331 p., 1988. Zbl0633.53002MR936419DOI10.1007/978-3-662-07441-1
  9. CHAVEL, I., Isoperimetric inequalities. Differential geometric and analytic perspectives, Cambridge Tracts in Mathematics. 145. Cambridge: Cambridge University Press. xii, 268 p. , 2001. Zbl0988.51019MR1849187
  10. DE GIORGI, E., Sulla proprieta isoperimentrica dell'ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita, Atti Accad. Naz. Lincei, Mem., Cl. Sci. Fis. Mat. Nat., Sez. I, VIII. Ser. 5 (1958), 33-44. Zbl0116.07901MR98331
  11. ESPOSITO, L. - FUSCO, N. - TROMBETTI, C., A quantitative version of the isoperimetric inequality: the anisotropic case, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 4 (2005), no. 4, 691-638. Zbl1170.52300MR2207737
  12. FIGALLI, A. - MAGGI, F. - PRATELLI, A., A mass transportation approach to quantitative isoperimetric inequalities, preprint (2007). Zbl1196.49033MR2672283DOI10.1007/s00222-010-0261-z
  13. FUGLEDE, B., Stability in the isoperimetric problem for convex or nearly spherical domains in n ., Trans. Am. Math. Soc.314 (1989), no. 2, 619-638. Zbl0679.52007MR942426DOI10.2307/2001401
  14. FUSCO, N. - MAGGI, F. - PRATELLI, A., The sharp quantitative isoperimetric inequality, to appear on Ann. of Math. Zbl1187.52009MR2456887DOI10.4007/annals.2008.168.941
  15. FUSCO, N., The classical isoperimetric theorem, Rend. Acc. Sc. fis. mat. Napoli LXXI, (2004), 63-107. Zbl1096.49024MR2147710
  16. HALL, R.R., A quantitative isoperimetric inequality in n-dimensional space, J. Reine Angew. Math.428 (1992), 161-175. Zbl0746.52012MR1166511DOI10.1515/crll.1992.428.161
  17. HALL, R.R. - HAYMAN, W.K., A problem in the theory of subordination, J. Anal. Math.60 (1993), 99-111. Zbl0851.42008MR1253231DOI10.1007/BF03341968
  18. HARDY, G.H. - LITTLEWOOD, J.E. - PÓLYA, G., Inequalities. 2nd ed., 1st. paperback ed., Cambridge Mathematical Library. Cambridge (UK) etc.: Cambridge University Press. xii, 324 p., 1988. MR944909
  19. HURWITZ, A., On the isoperimetric problem. (Sur le problème des isopérimètres.), C. R.132 (1901), 401-403. Zbl32.0386.01
  20. KAWOHL, B., Rearrangements and convexity of level sets in PDE, Lecture Notes in Mathematics.1150. Berlin etc.: Springer-Verlag. V, 136 p. DM 21.50, 1985. Zbl0593.35002MR810619DOI10.1007/BFb0075060
  21. LEBESGUE, H., Lecons sur les séries trigonométriques professées au Collège de France, Paris: Gauthier-Villars. 125 S. 8 , 1906. Zbl37.0281.01MR389527
  22. OSSERMAN, R., The isoperimetric inequality, Bull. Am. Math. Soc.84 (1978), 1182- 1238. Zbl0411.52006MR500557DOI10.1090/S0002-9904-1978-14553-4
  23. OSSERMAN, R., Bonnesen-style isoperimetric inequalities., Am. Math. Mon.86 (1979), 1-29. Zbl0404.52012MR519520DOI10.2307/2320297
  24. STREDULINSKY, E. - ZIEMER, WILLIAM P., Area minimizing sets subject to a volume constraint in a convex set, J. Geom. Anal.7 (1997), no. 4, 653-677. Zbl0940.49025MR1669207DOI10.1007/BF02921639
  25. TALENTI, G., Elliptic equations and rearrangements, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 3 (1976), 697-718. Zbl0341.35031MR601601
  26. TALENTI, G., Linear elliptic P.D.E.'s: Level sets. Rearrangements and a priori estimates of solutions, Boll. Unione Mat. Ital., VI. Ser., B 4 (1985), 917-949. Zbl0602.35025MR831299
  27. TALENTI, G., The standard isoperimetric theorem., Gruber, P. M. (ed.) et al., Hand-book of convex geometry. Volume A. Amsterdam: North-Holland. (1993), 73-123. Zbl0799.51015MR1242977DOI10.1016/B978-0-444-89596-7.50008-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.