The Quantitative Isoperimetric Inequality for Planar Convex Domains
Bollettino dell'Unione Matematica Italiana (2008)
- Volume: 1, Issue: 3, page 573-589
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topNitsch, Carlo. "The Quantitative Isoperimetric Inequality for Planar Convex Domains." Bollettino dell'Unione Matematica Italiana 1.3 (2008): 573-589. <http://eudml.org/doc/290467>.
@article{Nitsch2008,
abstract = {We prove that among all the convex bounded domains in $\mathbb\{R\}^2$ having an assigned Fraenkel asymmetry index, there exists only one convex set (up to a similarity) which minimizes the isoperimetric deficit. We show how to construct this set. The result can be read as a sharp improvement of the isoperimetric inequality for convex planar domains.},
author = {Nitsch, Carlo},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {573-589},
publisher = {Unione Matematica Italiana},
title = {The Quantitative Isoperimetric Inequality for Planar Convex Domains},
url = {http://eudml.org/doc/290467},
volume = {1},
year = {2008},
}
TY - JOUR
AU - Nitsch, Carlo
TI - The Quantitative Isoperimetric Inequality for Planar Convex Domains
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/10//
PB - Unione Matematica Italiana
VL - 1
IS - 3
SP - 573
EP - 589
AB - We prove that among all the convex bounded domains in $\mathbb{R}^2$ having an assigned Fraenkel asymmetry index, there exists only one convex set (up to a similarity) which minimizes the isoperimetric deficit. We show how to construct this set. The result can be read as a sharp improvement of the isoperimetric inequality for convex planar domains.
LA - eng
UR - http://eudml.org/doc/290467
ER -
References
top- ALVINO, A. - FERONE, V. - NITSCH, C., The sharp isoperimetric inequality in the plane, preprint (2008). Zbl1219.52006MR2735080DOI10.4171/JEMS/248
- ALVINO, A. - LIONS, P.-L. - TROMBETTI, G., On optimization problems with prescribed rearrangements, Nonlinear Anal., Theory Methods Appl.13 (1989), no. 2, 185-220. Zbl0678.49003MR979040DOI10.1016/0362-546X(89)90043-6
- BANDLE, C., Isoperimetric inequalities and applications, Monographs and Studies in Mathematics, 7. Boston, London, Melbourne: Pitman Advanced Publishing Program. X, 228 p., 1980. Zbl0436.35063MR572958
- BLASCHKE, W., Kreis und Kugel, Leipzig: Veit u. Co., X u. 169 S. gr. 8°, 1916. MR77958
- BONNESEN, T., Über eine Verscharfung der isoperimetrischen Ungleichheit des Kreises in der Ebene und auf der Kugeloberfläche nebst einer Anwendung auf eine Minkowskische Ungleichheit für konvexe Körper, Math. Ann.84 (1921), no. 3-4, 216-227. Zbl48.0591.03MR1512031DOI10.1007/BF01459405
- BONNESEN, T., Über das isoperimetrische Defizit ebener Figuren, Math. Ann.91 (1924), no. 3-4, 252-268. MR1512192DOI10.1007/BF01556082
- BONNESEN, T., Les problèmes des isopérimètres et des isépiphanes, 175 p. Paris, Gauthier-Villars (Collection de monographies sur la théorie des fonctions), 1929.
- BURAGO, YU. D. - ZALGALLER, V.A., Geometric inequalities. Transl. from the Russian by A. B. Sossinsky. Transl. from the Russian by A.B. Sossinsky, Grundlehren der Mathematischen Wissenschaften, 285. Berlin etc.: Springer-Verlag. XIV, 331 p., 1988. Zbl0633.53002MR936419DOI10.1007/978-3-662-07441-1
- CHAVEL, I., Isoperimetric inequalities. Differential geometric and analytic perspectives, Cambridge Tracts in Mathematics. 145. Cambridge: Cambridge University Press. xii, 268 p. , 2001. Zbl0988.51019MR1849187
- DE GIORGI, E., Sulla proprieta isoperimentrica dell'ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita, Atti Accad. Naz. Lincei, Mem., Cl. Sci. Fis. Mat. Nat., Sez. I, VIII. Ser. 5 (1958), 33-44. Zbl0116.07901MR98331
- ESPOSITO, L. - FUSCO, N. - TROMBETTI, C., A quantitative version of the isoperimetric inequality: the anisotropic case, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 4 (2005), no. 4, 691-638. Zbl1170.52300MR2207737
- FIGALLI, A. - MAGGI, F. - PRATELLI, A., A mass transportation approach to quantitative isoperimetric inequalities, preprint (2007). Zbl1196.49033MR2672283DOI10.1007/s00222-010-0261-z
- FUGLEDE, B., Stability in the isoperimetric problem for convex or nearly spherical domains in ., Trans. Am. Math. Soc.314 (1989), no. 2, 619-638. Zbl0679.52007MR942426DOI10.2307/2001401
- FUSCO, N. - MAGGI, F. - PRATELLI, A., The sharp quantitative isoperimetric inequality, to appear on Ann. of Math. Zbl1187.52009MR2456887DOI10.4007/annals.2008.168.941
- FUSCO, N., The classical isoperimetric theorem, Rend. Acc. Sc. fis. mat. Napoli LXXI, (2004), 63-107. Zbl1096.49024MR2147710
- HALL, R.R., A quantitative isoperimetric inequality in n-dimensional space, J. Reine Angew. Math.428 (1992), 161-175. Zbl0746.52012MR1166511DOI10.1515/crll.1992.428.161
- HALL, R.R. - HAYMAN, W.K., A problem in the theory of subordination, J. Anal. Math.60 (1993), 99-111. Zbl0851.42008MR1253231DOI10.1007/BF03341968
- HARDY, G.H. - LITTLEWOOD, J.E. - PÓLYA, G., Inequalities. 2nd ed., 1st. paperback ed., Cambridge Mathematical Library. Cambridge (UK) etc.: Cambridge University Press. xii, 324 p., 1988. MR944909
- HURWITZ, A., On the isoperimetric problem. (Sur le problème des isopérimètres.), C. R.132 (1901), 401-403. Zbl32.0386.01
- KAWOHL, B., Rearrangements and convexity of level sets in PDE, Lecture Notes in Mathematics.1150. Berlin etc.: Springer-Verlag. V, 136 p. DM 21.50, 1985. Zbl0593.35002MR810619DOI10.1007/BFb0075060
- LEBESGUE, H., Lecons sur les séries trigonométriques professées au Collège de France, Paris: Gauthier-Villars. 125 S. 8 , 1906. Zbl37.0281.01MR389527
- OSSERMAN, R., The isoperimetric inequality, Bull. Am. Math. Soc.84 (1978), 1182- 1238. Zbl0411.52006MR500557DOI10.1090/S0002-9904-1978-14553-4
- OSSERMAN, R., Bonnesen-style isoperimetric inequalities., Am. Math. Mon.86 (1979), 1-29. Zbl0404.52012MR519520DOI10.2307/2320297
- STREDULINSKY, E. - ZIEMER, WILLIAM P., Area minimizing sets subject to a volume constraint in a convex set, J. Geom. Anal.7 (1997), no. 4, 653-677. Zbl0940.49025MR1669207DOI10.1007/BF02921639
- TALENTI, G., Elliptic equations and rearrangements, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 3 (1976), 697-718. Zbl0341.35031MR601601
- TALENTI, G., Linear elliptic P.D.E.'s: Level sets. Rearrangements and a priori estimates of solutions, Boll. Unione Mat. Ital., VI. Ser., B 4 (1985), 917-949. Zbl0602.35025MR831299
- TALENTI, G., The standard isoperimetric theorem., Gruber, P. M. (ed.) et al., Hand-book of convex geometry. Volume A. Amsterdam: North-Holland. (1993), 73-123. Zbl0799.51015MR1242977DOI10.1016/B978-0-444-89596-7.50008-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.