A quantitative version of the isoperimetric inequality : the anisotropic case
Luca Esposito[1]; Nicola Fusco[2]; Cristina Trombetti[2]
- [1] Dipartimento di Ingegneria dell’Informazione e Matematica Applicata Via Ponte Don Melillo 84084 Fisciano (SA), Italy
- [2] Dipartimento di Matematica e Applicazioni Via Cintia 80126 Napoli, Italy
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)
- Volume: 4, Issue: 4, page 619-651
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topEsposito, Luca, Fusco, Nicola, and Trombetti, Cristina. "A quantitative version of the isoperimetric inequality : the anisotropic case." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.4 (2005): 619-651. <http://eudml.org/doc/84574>.
@article{Esposito2005,
abstract = {We state and prove a stability result for the anisotropic version of the isoperimetric inequality. Namely if $E$ is a set with small anisotropic isoperimetric deficit, then $E$ is “close” to the Wulff shape set.},
affiliation = {Dipartimento di Ingegneria dell’Informazione e Matematica Applicata Via Ponte Don Melillo 84084 Fisciano (SA), Italy; Dipartimento di Matematica e Applicazioni Via Cintia 80126 Napoli, Italy; Dipartimento di Matematica e Applicazioni Via Cintia 80126 Napoli, Italy},
author = {Esposito, Luca, Fusco, Nicola, Trombetti, Cristina},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {619-651},
publisher = {Scuola Normale Superiore, Pisa},
title = {A quantitative version of the isoperimetric inequality : the anisotropic case},
url = {http://eudml.org/doc/84574},
volume = {4},
year = {2005},
}
TY - JOUR
AU - Esposito, Luca
AU - Fusco, Nicola
AU - Trombetti, Cristina
TI - A quantitative version of the isoperimetric inequality : the anisotropic case
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 4
SP - 619
EP - 651
AB - We state and prove a stability result for the anisotropic version of the isoperimetric inequality. Namely if $E$ is a set with small anisotropic isoperimetric deficit, then $E$ is “close” to the Wulff shape set.
LA - eng
UR - http://eudml.org/doc/84574
ER -
References
top- [1] M. Amar and G. Bellettini, A notion of total variation depending on a metric with discontinuous coefficients, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 91–133. Zbl0842.49016MR1259102
- [2] L. Ambrosio, N. Fusco and D. Pallara, “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford University Press, 2000. Zbl0957.49001MR1857292
- [3] T. Bonnesen, Über die isoperimetrische Defizit ebener Figuren, Math. Ann. 91 (1924), 252–268. Zbl50.0487.03MR1512192JFM50.0487.03
- [4] Y. D. Burago and V. A. Zalgaller, “Geometric Inequalities”, Grund. Math. Wissen., Springer, 1988. Zbl0633.53002MR936419
- [5] G. Buttazzo, V. Ferone and B. Kawohl, Minimum problems over sets of concave functions and related questions, Math. Nachr. 173 (1995), 71–89. Zbl0835.49001MR1336954
- [6] M. Chlebík, A. Cianchi and N. Fusco, The perimeter inequality for Steiner symmatrization: cases of equality, Ann. of Math. 162 (2005), 525–555. Zbl1087.28003MR2178968
- [7] B. Dacorogna and C. E. Pfister, Wulff theorem and best constant in Sobolev inequality, J. Math. Pures Appl. 71 (1992), 97–118. Zbl0676.46031MR1170247
- [8] E. De Giorgi, Sulla proprietà isoperimetrica dell’ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez. I (8) 5 (1958), 33–44. Zbl0116.07901MR98331
- [9] A. Dinghas, Über einen geometrischen Satz von Wulff für die Gleichgewichtsform von Kristallen, Z. Krist. 105 (1944), 304–314. Zbl0028.43001MR12454
- [10] R. M. Dudley, Metric entropy of some classes of sets with differentiable boundaries, J. Approx. Theory 10 (1974), 227–236. Zbl0275.41011MR358168
- [11] I. Fonseca, The Wulff theorem revisited, Proc. Roy. Soc. London 432 (1991), 125–145. Zbl0725.49017MR1116536
- [12] I. Fonseca and S. Müller, A uniqueness proof for the Wulff theorem, Proc. Roy. Soc. Edinburgh 119A (1991), 125–136. Zbl0752.49019MR1130601
- [13] B. Fuglede, Stability in the isoperimetric problem for convex or nearly spherical domains in , Trans. Amer. Math. Soc. 314 (1989), 619–638. Zbl0679.52007MR942426
- [14] P. M. Gruber, Aspects of Approximation of Convex Bodies, In: “Handbook of Convex Geometry”, P. M. Gruber and J. M. Wills (eds.), Elsevier, 1993, 319–345. Zbl0791.52007MR1242984
- [15] R. R. Hall, A quantitative isoperimetric inequality in -dimensional space, J. Reine Angew. Math. 428 (1992), 161–176. Zbl0746.52012MR1166511
- [16] R. R. Hall, W. K. Hayman and A. W. Weitsman, On asymmetry and capacity, J. Anal. Math. 56 (1991), 87–123. Zbl0747.31004MR1243100
- [17] A. Hertle, On the problem of well-posedness for the Radon transform, In: “Mathematical Aspects of Computerized Tomography”, Proc. Oberwolfach 1980, Lect. Notes Medic. Inform., Vol. 8, 1981, 36–44. Zbl0555.46020MR720394
- [18] M. Longinetti, Some questions of stability in the reconstruction of plane convex bodies from projections, Inverse Problems 1 (1985), 87–97. Zbl0597.52001MR787854
- [19] J. Taylor, Existence and structure of solutions to a class of nonelliptic variational problems, Sympos. Math. 14 (1974), 499–508. Zbl0317.49053MR420407
- [20] J. Taylor, Unique structure of solutions to a class of nonelliptic variational problems, Proc. Sympos. Pure Math. 27 (1975), 419–427. Zbl0317.49054MR388225
- [21] J. Taylor, Crystalline variational problems, Bull. Amer. Math. Soc. 84 (1978), 568–588. Zbl0392.49022MR493671
- [22] G. Wulff, Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Kristallfläschen, Z. Krist. 34 (1901), 449–530.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.