A quantitative version of the isoperimetric inequality : the anisotropic case

Luca Esposito[1]; Nicola Fusco[2]; Cristina Trombetti[2]

  • [1] Dipartimento di Ingegneria dell’Informazione e Matematica Applicata Via Ponte Don Melillo 84084 Fisciano (SA), Italy
  • [2] Dipartimento di Matematica e Applicazioni Via Cintia 80126 Napoli, Italy

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)

  • Volume: 4, Issue: 4, page 619-651
  • ISSN: 0391-173X

Abstract

top
We state and prove a stability result for the anisotropic version of the isoperimetric inequality. Namely if E is a set with small anisotropic isoperimetric deficit, then E is “close” to the Wulff shape set.

How to cite

top

Esposito, Luca, Fusco, Nicola, and Trombetti, Cristina. "A quantitative version of the isoperimetric inequality : the anisotropic case." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.4 (2005): 619-651. <http://eudml.org/doc/84574>.

@article{Esposito2005,
abstract = {We state and prove a stability result for the anisotropic version of the isoperimetric inequality. Namely if $E$ is a set with small anisotropic isoperimetric deficit, then $E$ is “close” to the Wulff shape set.},
affiliation = {Dipartimento di Ingegneria dell’Informazione e Matematica Applicata Via Ponte Don Melillo 84084 Fisciano (SA), Italy; Dipartimento di Matematica e Applicazioni Via Cintia 80126 Napoli, Italy; Dipartimento di Matematica e Applicazioni Via Cintia 80126 Napoli, Italy},
author = {Esposito, Luca, Fusco, Nicola, Trombetti, Cristina},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {619-651},
publisher = {Scuola Normale Superiore, Pisa},
title = {A quantitative version of the isoperimetric inequality : the anisotropic case},
url = {http://eudml.org/doc/84574},
volume = {4},
year = {2005},
}

TY - JOUR
AU - Esposito, Luca
AU - Fusco, Nicola
AU - Trombetti, Cristina
TI - A quantitative version of the isoperimetric inequality : the anisotropic case
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 4
SP - 619
EP - 651
AB - We state and prove a stability result for the anisotropic version of the isoperimetric inequality. Namely if $E$ is a set with small anisotropic isoperimetric deficit, then $E$ is “close” to the Wulff shape set.
LA - eng
UR - http://eudml.org/doc/84574
ER -

References

top
  1. [1] M. Amar and G. Bellettini, A notion of total variation depending on a metric with discontinuous coefficients, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 91–133. Zbl0842.49016MR1259102
  2. [2] L. Ambrosio, N. Fusco and D. Pallara, “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford University Press, 2000. Zbl0957.49001MR1857292
  3. [3] T. Bonnesen, Über die isoperimetrische Defizit ebener Figuren, Math. Ann. 91 (1924), 252–268. Zbl50.0487.03MR1512192JFM50.0487.03
  4. [4] Y. D. Burago and V. A. Zalgaller, “Geometric Inequalities”, Grund. Math. Wissen., Springer, 1988. Zbl0633.53002MR936419
  5. [5] G. Buttazzo, V. Ferone and B. Kawohl, Minimum problems over sets of concave functions and related questions, Math. Nachr. 173 (1995), 71–89. Zbl0835.49001MR1336954
  6. [6] M. Chlebík, A. Cianchi and N. Fusco, The perimeter inequality for Steiner symmatrization: cases of equality, Ann. of Math. 162 (2005), 525–555. Zbl1087.28003MR2178968
  7. [7] B. Dacorogna and C. E. Pfister, Wulff theorem and best constant in Sobolev inequality, J. Math. Pures Appl. 71 (1992), 97–118. Zbl0676.46031MR1170247
  8. [8] E. De Giorgi, Sulla proprietà isoperimetrica dell’ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez. I (8) 5 (1958), 33–44. Zbl0116.07901MR98331
  9. [9] A. Dinghas, Über einen geometrischen Satz von Wulff für die Gleichgewichtsform von Kristallen, Z. Krist. 105 (1944), 304–314. Zbl0028.43001MR12454
  10. [10] R. M. Dudley, Metric entropy of some classes of sets with differentiable boundaries, J. Approx. Theory 10 (1974), 227–236. Zbl0275.41011MR358168
  11. [11] I. Fonseca, The Wulff theorem revisited, Proc. Roy. Soc. London 432 (1991), 125–145. Zbl0725.49017MR1116536
  12. [12] I. Fonseca and S. Müller, A uniqueness proof for the Wulff theorem, Proc. Roy. Soc. Edinburgh 119A (1991), 125–136. Zbl0752.49019MR1130601
  13. [13] B. Fuglede, Stability in the isoperimetric problem for convex or nearly spherical domains in n , Trans. Amer. Math. Soc. 314 (1989), 619–638. Zbl0679.52007MR942426
  14. [14] P. M. Gruber, Aspects of Approximation of Convex Bodies, In: “Handbook of Convex Geometry”, P. M. Gruber and J. M. Wills (eds.), Elsevier, 1993, 319–345. Zbl0791.52007MR1242984
  15. [15] R. R. Hall, A quantitative isoperimetric inequality in n -dimensional space, J. Reine Angew. Math. 428 (1992), 161–176. Zbl0746.52012MR1166511
  16. [16] R. R. Hall, W. K. Hayman and A. W. Weitsman, On asymmetry and capacity, J. Anal. Math. 56 (1991), 87–123. Zbl0747.31004MR1243100
  17. [17] A. Hertle, On the problem of well-posedness for the Radon transform, In: “Mathematical Aspects of Computerized Tomography”, Proc. Oberwolfach 1980, Lect. Notes Medic. Inform., Vol. 8, 1981, 36–44. Zbl0555.46020MR720394
  18. [18] M. Longinetti, Some questions of stability in the reconstruction of plane convex bodies from projections, Inverse Problems 1 (1985), 87–97. Zbl0597.52001MR787854
  19. [19] J. Taylor, Existence and structure of solutions to a class of nonelliptic variational problems, Sympos. Math. 14 (1974), 499–508. Zbl0317.49053MR420407
  20. [20] J. Taylor, Unique structure of solutions to a class of nonelliptic variational problems, Proc. Sympos. Pure Math. 27 (1975), 419–427. Zbl0317.49054MR388225
  21. [21] J. Taylor, Crystalline variational problems, Bull. Amer. Math. Soc. 84 (1978), 568–588. Zbl0392.49022MR493671
  22. [22] G. Wulff, Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Kristallfläschen, Z. Krist. 34 (1901), 449–530. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.