The Bernstein Theorem in Higher Dimensions
Umberto Massari; Mario Miranda; Michele Jr. Miranda
Bollettino dell'Unione Matematica Italiana (2008)
- Volume: 1, Issue: 2, page 349-359
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topMassari, Umberto, Miranda, Mario, and Miranda, Michele Jr.. "The Bernstein Theorem in Higher Dimensions." Bollettino dell'Unione Matematica Italiana 1.2 (2008): 349-359. <http://eudml.org/doc/290472>.
@article{Massari2008,
abstract = {In this work we have reconsidered the famous paper of Bombieri, De Giorgi and Giusti [4] and, thanks to the software Mathematica® we made it possible for anybody to control the difficult computations.},
author = {Massari, Umberto, Miranda, Mario, Miranda, Michele Jr.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {349-359},
publisher = {Unione Matematica Italiana},
title = {The Bernstein Theorem in Higher Dimensions},
url = {http://eudml.org/doc/290472},
volume = {1},
year = {2008},
}
TY - JOUR
AU - Massari, Umberto
AU - Miranda, Mario
AU - Miranda, Michele Jr.
TI - The Bernstein Theorem in Higher Dimensions
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/6//
PB - Unione Matematica Italiana
VL - 1
IS - 2
SP - 349
EP - 359
AB - In this work we have reconsidered the famous paper of Bombieri, De Giorgi and Giusti [4] and, thanks to the software Mathematica® we made it possible for anybody to control the difficult computations.
LA - eng
UR - http://eudml.org/doc/290472
ER -
References
top- ALMGREN, F. J., Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem. Ann. of Math. (2), 84 (1966), 277-292. Zbl0146.11905MR200816DOI10.2307/1970520
- BENARROS, D., I coni di Lawson e il Teorema di Bernstein PhD Thesis, University of Trento, unpublished, 1994.
- BENARROS, D. - MIRANDA, M., Lawson cones and the Bernstein theorem. Advances in geometric analysis and continuum mechanics (1995), 44-56. Zbl0860.53003MR1356726
- BOMBIERI, E. - DE GIORGI, E. - GIUSTI, E., Minimal cones and the Bernstein problem. Invent. Math., 7 (1969), 243-268. Zbl0183.25901MR250205DOI10.1007/BF01404309
- F. E. BROWDER, editor. Mathematical developments arising from Hilbert problems. American Mathematical Society, Providence, R. I., 1976. MR419125
- DE GIORGI, E., Frontiere orientate di misura minima. Seminario di Matematica della Scuola Normale Superiore di Pisa, Editrice Tecnico Scientifica, Pisa, 1961. Zbl0296.49031MR179651
- DE GIORGI, E., Complementi alla teoria della misura -dimensionale in uno spazio n-dimensionale. Seminario di Matematica della Scuola Normale Superiore di Pisa, Editrice Tecnico Scientifica, Pisa1961. MR179650
- DE GIORGI, E. - COLOMBINI, F. - PICCININI, L. C., Frontiere orientate di misura minima e questioni collegate. Scuola Normale Superiore, Pisa, 1972. Zbl0296.49031MR493669
- DE GIORGI, E., Una estensione del teorema di Bernstein. Ann. Scuola Norm. Sup. Pisa (3), 19 (1965), 79-85. MR178385
- DE GIORGI, E., Selected papers. Springer-Verlag, Berlin, 2006. MR2229237DOI10.1007/978-3-642-41496-1
- FLEMING, W. H., On the oriented Plateau problem. Rend. Circ. Mat. Palermo (2), 11 (1962), 69-90. Zbl0107.31304MR157263DOI10.1007/BF02849427
- MASSARI, U. - MIRANDA, M., A remark on minimal cones. Boll. Un. Mat. Ital. A (6), 2 (1) (1983), 123-125. Zbl0518.49030MR694754
- MIRANDA, M., Un teorema di esistenza e unicità per il problema dell'area minima in n variabili. Ann. Scuola Norm. Sup. Pisa (3), 19 (1965), 233-249. Zbl0137.08201MR181918
- MIRANDA, M., Grafici minimi completi, Ann. Univ. Ferrara, 23 (1977), 269-272. MR467551
- MIRANDA, M., Superfici minime illimitate, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 4, n. 2 (1977), 313-322. MR500423
- MIRANDA, MARIO, A nontrivial solution to the minimal surface equation in . In Boundary value problems for partial differential equations and applications, volume 29 of RMA Res. Notes Appl. Math., pages 399-402. Masson, Paris, 1993. Zbl0792.49028MR1260469
- NITSCHE, J. C. C., Elementary proof of Bernstein's theorem on minimal surfaces. Ann. of Math. (2), 66 (1957), 543-544. Zbl0079.37702MR90833DOI10.2307/1969907
- SIMONS, J.. Minimal varieties in riemannian manifolds. Ann. of Math. (2), 88 (1968), 62-105. Zbl0181.49702MR233295DOI10.2307/1970556
- WOLFRAM, S., The Mathematica® book. Fourth edition. Wolfram Media, Inc., Champaign, IL, Cambridge University Press, Cambridge, 1999. MR1721106
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.