A Note on Sectorial and R-Sectorial Operators
Bollettino dell'Unione Matematica Italiana (2008)
- Volume: 1, Issue: 1, page 79-85
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topVenni, Alberto. "A Note on Sectorial and R-Sectorial Operators." Bollettino dell'Unione Matematica Italiana 1.1 (2008): 79-85. <http://eudml.org/doc/290486>.
@article{Venni2008,
abstract = {The following results are proved: (i) if $\alpha$, $\beta \in \mathbb\{R\}^+$ and $A$ is a sectorial operator, then the set $\\{t^\{\alpha\}A^\{\beta\}(t+A); t>0 \\}$ is bounded; (ii) the same set of operators is R-bounded if $A$ is R-sectorial.},
author = {Venni, Alberto},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {79-85},
publisher = {Unione Matematica Italiana},
title = {A Note on Sectorial and R-Sectorial Operators},
url = {http://eudml.org/doc/290486},
volume = {1},
year = {2008},
}
TY - JOUR
AU - Venni, Alberto
TI - A Note on Sectorial and R-Sectorial Operators
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/2//
PB - Unione Matematica Italiana
VL - 1
IS - 1
SP - 79
EP - 85
AB - The following results are proved: (i) if $\alpha$, $\beta \in \mathbb{R}^+$ and $A$ is a sectorial operator, then the set $\{t^{\alpha}A^{\beta}(t+A); t>0 \}$ is bounded; (ii) the same set of operators is R-bounded if $A$ is R-sectorial.
LA - eng
UR - http://eudml.org/doc/290486
ER -
References
top- CLÉMENT, P. - DE PAGTER, B. - SUKOCHEV, F.A. - WITVLIET, H., Schauder decompositions and multiplier theorems, Studia Math., 138 (2000), 135-163. Zbl0955.46004MR1749077
- DENK, R. - HIEBER, M. - PRÜSS, J., R-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166, no. 788 (2003). MR2006641DOI10.1090/memo/0788
- FAVINI, A. - YAKUBOV, YA., Boundary value problems for second order elliptic differential-operator equations in UMD Banach spaces, preprint 2007. Zbl1214.34046MR2555735
- HAASE, M., The Functional Calculus for Sectorial Operators, Operator Theory, Advances and Applications, 169, Birkhauser Verlag2006. Zbl1101.47010MR2244037DOI10.1007/3-7643-7698-8
- MARTÍNEZ CARRACEDO, C. - SANZ ALIX, M., The Theory of Fractional Powers of Operators, North-Holland Mathematics Studies, 187, Elsevier2001. Zbl0971.47011MR1850825
- WEIS, L., Operator-valued Fourier multiplier theorems and maximal -regularity, Math. Ann., 319 (2001), 735-758. Zbl0989.47025MR1825406DOI10.1007/PL00004457
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.