A Note on Sectorial and R-Sectorial Operators

Alberto Venni

Bollettino dell'Unione Matematica Italiana (2008)

  • Volume: 1, Issue: 1, page 79-85
  • ISSN: 0392-4041

Abstract

top
The following results are proved: (i) if α , β + and A is a sectorial operator, then the set { t α A β ( t + A ) ; t > 0 } is bounded; (ii) the same set of operators is R-bounded if A is R-sectorial.

How to cite

top

Venni, Alberto. "A Note on Sectorial and R-Sectorial Operators." Bollettino dell'Unione Matematica Italiana 1.1 (2008): 79-85. <http://eudml.org/doc/290486>.

@article{Venni2008,
abstract = {The following results are proved: (i) if $\alpha$, $\beta \in \mathbb\{R\}^+$ and $A$ is a sectorial operator, then the set $\\{t^\{\alpha\}A^\{\beta\}(t+A); t>0 \\}$ is bounded; (ii) the same set of operators is R-bounded if $A$ is R-sectorial.},
author = {Venni, Alberto},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {79-85},
publisher = {Unione Matematica Italiana},
title = {A Note on Sectorial and R-Sectorial Operators},
url = {http://eudml.org/doc/290486},
volume = {1},
year = {2008},
}

TY - JOUR
AU - Venni, Alberto
TI - A Note on Sectorial and R-Sectorial Operators
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/2//
PB - Unione Matematica Italiana
VL - 1
IS - 1
SP - 79
EP - 85
AB - The following results are proved: (i) if $\alpha$, $\beta \in \mathbb{R}^+$ and $A$ is a sectorial operator, then the set $\{t^{\alpha}A^{\beta}(t+A); t>0 \}$ is bounded; (ii) the same set of operators is R-bounded if $A$ is R-sectorial.
LA - eng
UR - http://eudml.org/doc/290486
ER -

References

top
  1. CLÉMENT, P. - DE PAGTER, B. - SUKOCHEV, F.A. - WITVLIET, H., Schauder decompositions and multiplier theorems, Studia Math., 138 (2000), 135-163. Zbl0955.46004MR1749077
  2. DENK, R. - HIEBER, M. - PRÜSS, J., R-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166, no. 788 (2003). MR2006641DOI10.1090/memo/0788
  3. FAVINI, A. - YAKUBOV, YA., Boundary value problems for second order elliptic differential-operator equations in UMD Banach spaces, preprint 2007. Zbl1214.34046MR2555735
  4. HAASE, M., The Functional Calculus for Sectorial Operators, Operator Theory, Advances and Applications, 169, Birkhauser Verlag2006. Zbl1101.47010MR2244037DOI10.1007/3-7643-7698-8
  5. MARTÍNEZ CARRACEDO, C. - SANZ ALIX, M., The Theory of Fractional Powers of Operators, North-Holland Mathematics Studies, 187, Elsevier2001. Zbl0971.47011MR1850825
  6. WEIS, L., Operator-valued Fourier multiplier theorems and maximal L p -regularity, Math. Ann., 319 (2001), 735-758. Zbl0989.47025MR1825406DOI10.1007/PL00004457

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.