Schauder decompositions and multiplier theorems

P. Clément; B. de Pagter; F. Sukochev; H. Witvliet

Studia Mathematica (2000)

  • Volume: 138, Issue: 2, page 135-163
  • ISSN: 0039-3223

Abstract

top
We study the interplay between unconditional decompositions and the R-boundedness of collections of operators. In particular, we get several multiplier results of Marcinkiewicz type for L p -spaces of functions with values in a Banach space X. Furthermore, we show connections between the above-mentioned properties and geometric properties of the Banach space X.

How to cite

top

Clément, P., et al. "Schauder decompositions and multiplier theorems." Studia Mathematica 138.2 (2000): 135-163. <http://eudml.org/doc/216695>.

@article{Clément2000,
abstract = {We study the interplay between unconditional decompositions and the R-boundedness of collections of operators. In particular, we get several multiplier results of Marcinkiewicz type for $L^p$-spaces of functions with values in a Banach space X. Furthermore, we show connections between the above-mentioned properties and geometric properties of the Banach space X.},
author = {Clément, P., de Pagter, B., Sukochev, F., Witvliet, H.},
journal = {Studia Mathematica},
keywords = {Marcinkiewicz-type multiplier theorems; -boundedness; Schauder decomposition},
language = {eng},
number = {2},
pages = {135-163},
title = {Schauder decompositions and multiplier theorems},
url = {http://eudml.org/doc/216695},
volume = {138},
year = {2000},
}

TY - JOUR
AU - Clément, P.
AU - de Pagter, B.
AU - Sukochev, F.
AU - Witvliet, H.
TI - Schauder decompositions and multiplier theorems
JO - Studia Mathematica
PY - 2000
VL - 138
IS - 2
SP - 135
EP - 163
AB - We study the interplay between unconditional decompositions and the R-boundedness of collections of operators. In particular, we get several multiplier results of Marcinkiewicz type for $L^p$-spaces of functions with values in a Banach space X. Furthermore, we show connections between the above-mentioned properties and geometric properties of the Banach space X.
LA - eng
KW - Marcinkiewicz-type multiplier theorems; -boundedness; Schauder decomposition
UR - http://eudml.org/doc/216695
ER -

References

top
  1. [BG94] E. Berkson and T. A. Gillespie, Spectral decompositions and harmonic analysis on UMD spaces, Studia Math. 112 (1994), 13-49. Zbl0823.42004
  2. [Bou83] J. Bourgain, Some remarks on Banach spaces in which martingale differences are unconditional, Ark. Mat. 21 (1983), 163-168. Zbl0533.46008
  3. [Bou85] J. Bourgain, Vector-valued singular integrals and the H 1 -BMO duality, in: Probability Theory and Harmonic Analysis, Dekker, New York, 1985, 1-19. 
  4. [Bur83] D. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, in: Proc. Conf. on Harmonic Analysis in Honor of Antoni Zygmund (Chicago, 1981), Wadsworth, Belmont, 1983, 270-286. 
  5. [DJT95] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Univ. Press, 1995. Zbl0855.47016
  6. [DU77] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, RI, 1977. 
  7. [DS97] P. Dodds and F. Sukochev, Non-commutative bounded Vilenkin systems, preprint, 1997. 
  8. [EG77] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Ergeb. Math. Grenzgeb. 90, Springer, Berlin, 1977. 
  9. [GK70] I. C. Gohberg and M. G. Kreĭn, Theory and Applications of Volterra Operators in Hilbert Space, Transl. Math. Monogr. 24, Amer. Math. Soc., Providence, RI, 1970. Zbl0194.43804
  10. [KP79] N. J. Kalton and N. T. Peck, Twisted sums of sequence spaces and the three space problem, Trans. Amer. Math. Soc. 255 (1979), 1-30. Zbl0424.46004
  11. [KP70] S. Kwapień and A. Pełczyński, The main triangle projection in matrix spaces and its applications, Studia Math. 34 (1970), 43-68. Zbl0189.43505
  12. [LT77] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I, Ergeb. Math. Grenzgeb. 92, Springer, Berlin, 1977. 
  13. [Mar39] J. Marcinkiewicz, Sur les multiplicateurs des séries de Fourier, Studia Math. 8 (1939), 78-91. 
  14. [Mau75] B. Maurey, Système de Haar, in: Séminaire Maurey-Schwartz 1974-1975: Espaces L p , applications radonifiantes et géométrie des espaces de Banach, Exp. Nos. I et II, Centre Math., École Polytech., Paris, 1975, p. 26. 
  15. [Pal32] R. E. A. C. Paley, A remarkable series of orthogonal functions, Proc. London Math. Soc. 34 (1932), 241-279. Zbl0005.24901
  16. [Pis78] G. Pisier, Some results on Banach spaces without local unconditional structure, Composito Math. 37 (1978), 3-19. Zbl0381.46010
  17. [SWS90] F. Schipp, W. R. Wade and P. Simon, Walsh Series, Adam Hilger, Bristol, 1990. 
  18. [Ste70] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Ann. of Math. Stud. 63, Princeton Univ. Press, Princeton, NJ, 1970. 
  19. [SF94] A. Sukochev and S. V. Ferleger, Harmonic analysis in symmetric spaces of measurable operators, Dokl. Akad. Nauk 339 (1994), 307-310 (in Russian); English transl.: Russian. Acad. Sci. Dokl. Math. 50 (1995), 432-437. 
  20. [SF95] F. A. Sukochev and S. V. Ferleger, Harmonic analysis in (UMD)-spaces: Applications to the theory of bases, Mat. Zametki 58 (1995), 890-905 (in Russian); English transl.: Math. Notes 58 (1995), 1315-1326. Zbl0857.46006
  21. [Sun51] G. I. Sunouchi, On the Walsh-Kaczmarz series, Proc. Amer. Math. Soc. 2 (1951), 5-11. Zbl0044.07103
  22. [Wat58] C. Watari, On generalized Walsh Fourier series, Tôhoku Math. J. (2) 10 (1958), 211-241. Zbl0085.05803
  23. [Wen93] J. Wenzel, Mean convergence of vector-valued Walsh series, Math. Nachr. 162 (1993), 117-124. Zbl0799.42015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.