Schauder decompositions and multiplier theorems

P. Clément; B. de Pagter; F. Sukochev; H. Witvliet

Studia Mathematica (2000)

  • Volume: 138, Issue: 2, page 135-163
  • ISSN: 0039-3223

Abstract

top
We study the interplay between unconditional decompositions and the R-boundedness of collections of operators. In particular, we get several multiplier results of Marcinkiewicz type for L p -spaces of functions with values in a Banach space X. Furthermore, we show connections between the above-mentioned properties and geometric properties of the Banach space X.

How to cite

top

Clément, P., et al. "Schauder decompositions and multiplier theorems." Studia Mathematica 138.2 (2000): 135-163. <http://eudml.org/doc/216695>.

@article{Clément2000,
abstract = {We study the interplay between unconditional decompositions and the R-boundedness of collections of operators. In particular, we get several multiplier results of Marcinkiewicz type for $L^p$-spaces of functions with values in a Banach space X. Furthermore, we show connections between the above-mentioned properties and geometric properties of the Banach space X.},
author = {Clément, P., de Pagter, B., Sukochev, F., Witvliet, H.},
journal = {Studia Mathematica},
keywords = {Marcinkiewicz-type multiplier theorems; -boundedness; Schauder decomposition},
language = {eng},
number = {2},
pages = {135-163},
title = {Schauder decompositions and multiplier theorems},
url = {http://eudml.org/doc/216695},
volume = {138},
year = {2000},
}

TY - JOUR
AU - Clément, P.
AU - de Pagter, B.
AU - Sukochev, F.
AU - Witvliet, H.
TI - Schauder decompositions and multiplier theorems
JO - Studia Mathematica
PY - 2000
VL - 138
IS - 2
SP - 135
EP - 163
AB - We study the interplay between unconditional decompositions and the R-boundedness of collections of operators. In particular, we get several multiplier results of Marcinkiewicz type for $L^p$-spaces of functions with values in a Banach space X. Furthermore, we show connections between the above-mentioned properties and geometric properties of the Banach space X.
LA - eng
KW - Marcinkiewicz-type multiplier theorems; -boundedness; Schauder decomposition
UR - http://eudml.org/doc/216695
ER -

References

top
  1. [BG94] E. Berkson and T. A. Gillespie, Spectral decompositions and harmonic analysis on UMD spaces, Studia Math. 112 (1994), 13-49. Zbl0823.42004
  2. [Bou83] J. Bourgain, Some remarks on Banach spaces in which martingale differences are unconditional, Ark. Mat. 21 (1983), 163-168. Zbl0533.46008
  3. [Bou85] J. Bourgain, Vector-valued singular integrals and the H 1 -BMO duality, in: Probability Theory and Harmonic Analysis, Dekker, New York, 1985, 1-19. 
  4. [Bur83] D. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, in: Proc. Conf. on Harmonic Analysis in Honor of Antoni Zygmund (Chicago, 1981), Wadsworth, Belmont, 1983, 270-286. 
  5. [DJT95] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Univ. Press, 1995. Zbl0855.47016
  6. [DU77] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, RI, 1977. 
  7. [DS97] P. Dodds and F. Sukochev, Non-commutative bounded Vilenkin systems, preprint, 1997. 
  8. [EG77] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Ergeb. Math. Grenzgeb. 90, Springer, Berlin, 1977. 
  9. [GK70] I. C. Gohberg and M. G. Kreĭn, Theory and Applications of Volterra Operators in Hilbert Space, Transl. Math. Monogr. 24, Amer. Math. Soc., Providence, RI, 1970. Zbl0194.43804
  10. [KP79] N. J. Kalton and N. T. Peck, Twisted sums of sequence spaces and the three space problem, Trans. Amer. Math. Soc. 255 (1979), 1-30. Zbl0424.46004
  11. [KP70] S. Kwapień and A. Pełczyński, The main triangle projection in matrix spaces and its applications, Studia Math. 34 (1970), 43-68. Zbl0189.43505
  12. [LT77] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I, Ergeb. Math. Grenzgeb. 92, Springer, Berlin, 1977. 
  13. [Mar39] J. Marcinkiewicz, Sur les multiplicateurs des séries de Fourier, Studia Math. 8 (1939), 78-91. 
  14. [Mau75] B. Maurey, Système de Haar, in: Séminaire Maurey-Schwartz 1974-1975: Espaces L p , applications radonifiantes et géométrie des espaces de Banach, Exp. Nos. I et II, Centre Math., École Polytech., Paris, 1975, p. 26. 
  15. [Pal32] R. E. A. C. Paley, A remarkable series of orthogonal functions, Proc. London Math. Soc. 34 (1932), 241-279. Zbl0005.24901
  16. [Pis78] G. Pisier, Some results on Banach spaces without local unconditional structure, Composito Math. 37 (1978), 3-19. Zbl0381.46010
  17. [SWS90] F. Schipp, W. R. Wade and P. Simon, Walsh Series, Adam Hilger, Bristol, 1990. 
  18. [Ste70] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Ann. of Math. Stud. 63, Princeton Univ. Press, Princeton, NJ, 1970. 
  19. [SF94] A. Sukochev and S. V. Ferleger, Harmonic analysis in symmetric spaces of measurable operators, Dokl. Akad. Nauk 339 (1994), 307-310 (in Russian); English transl.: Russian. Acad. Sci. Dokl. Math. 50 (1995), 432-437. 
  20. [SF95] F. A. Sukochev and S. V. Ferleger, Harmonic analysis in (UMD)-spaces: Applications to the theory of bases, Mat. Zametki 58 (1995), 890-905 (in Russian); English transl.: Math. Notes 58 (1995), 1315-1326. Zbl0857.46006
  21. [Sun51] G. I. Sunouchi, On the Walsh-Kaczmarz series, Proc. Amer. Math. Soc. 2 (1951), 5-11. Zbl0044.07103
  22. [Wat58] C. Watari, On generalized Walsh Fourier series, Tôhoku Math. J. (2) 10 (1958), 211-241. Zbl0085.05803
  23. [Wen93] J. Wenzel, Mean convergence of vector-valued Walsh series, Math. Nachr. 162 (1993), 117-124. Zbl0799.42015

NotesEmbed ?

top

You must be logged in to post comments.