Squarefree Lexsegment Ideals with Linear Resolution
Vittoria Bonanzinga; Loredana Sorrenti
Bollettino dell'Unione Matematica Italiana (2008)
- Volume: 1, Issue: 1, page 275-291
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topBonanzinga, Vittoria, and Sorrenti, Loredana. "Squarefree Lexsegment Ideals with Linear Resolution." Bollettino dell'Unione Matematica Italiana 1.1 (2008): 275-291. <http://eudml.org/doc/290493>.
@article{Bonanzinga2008,
abstract = {In this paper we determine all squarefree completely lexsegment ideals which have a linear resolution. Let $M_d$ denote the set of all squarefree monomials of degree $d$ in a polynomial ring $k[x_1, \ldots, x_n ]$ in $n$ variables over a field $k$. We order the monomials lexicographically such that $x_1 > x_2 > \ldots > x_n$, thus a lexsegment (of degree $d$) is a subset of $M_d$ of the form $L(u, v) = \\{w \in M_d: u \geq w \geq v\\}$ for some $u, v \in M_d$ con $u \geq v$. An ideal generated by a lexsegment is called a lexsegment ideal. We describe the procedure to determine when such an ideal has a linear resolution.},
author = {Bonanzinga, Vittoria, Sorrenti, Loredana},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {275-291},
publisher = {Unione Matematica Italiana},
title = {Squarefree Lexsegment Ideals with Linear Resolution},
url = {http://eudml.org/doc/290493},
volume = {1},
year = {2008},
}
TY - JOUR
AU - Bonanzinga, Vittoria
AU - Sorrenti, Loredana
TI - Squarefree Lexsegment Ideals with Linear Resolution
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/2//
PB - Unione Matematica Italiana
VL - 1
IS - 1
SP - 275
EP - 291
AB - In this paper we determine all squarefree completely lexsegment ideals which have a linear resolution. Let $M_d$ denote the set of all squarefree monomials of degree $d$ in a polynomial ring $k[x_1, \ldots, x_n ]$ in $n$ variables over a field $k$. We order the monomials lexicographically such that $x_1 > x_2 > \ldots > x_n$, thus a lexsegment (of degree $d$) is a subset of $M_d$ of the form $L(u, v) = \{w \in M_d: u \geq w \geq v\}$ for some $u, v \in M_d$ con $u \geq v$. An ideal generated by a lexsegment is called a lexsegment ideal. We describe the procedure to determine when such an ideal has a linear resolution.
LA - eng
UR - http://eudml.org/doc/290493
ER -
References
top- ARAMOVA, A. - AVRAMOV, L. L. - HERZOG, J., Resolutions of monomial ideals and cohomology over exterior algebras, Trans. AMS, 352 (2) (2000), 579-594. Zbl0930.13011MR1603874DOI10.1090/S0002-9947-99-02298-9
- ARAMOVA, A. - DE NEGRI, E. - HERZOG, J., Lexsegment ideals with linear resolution, Illinois J. of Math., 42 (3) (1998), 509-523. Zbl0904.13008MR1631268
- ARAMOVA, A. - HERZOG, J. - HIBI, T., Squarefree lexsegment ideals, Math. Z., 228 (2) (1998), 353-378. Zbl0914.13007MR1630500DOI10.1007/PL00004621
- BONANZINGA, V., Lexsegment ideals in the exterior algebra, in "Geometric and Combinatorial aspects of commutative algebra", (J. Herzog and G. Restuccia Eds.), Lect. Notes in Pure and Appl. Math., 4, Dekker, New York, (1999), 43-56. MR1824216
- DE NEGRI, E. - HERZOG, J., Completely lexsegment ideals, Proc. Amer. Math. Soc., 126 (12) (1998), 3467-3473. Zbl0906.13004MR1452799DOI10.1090/S0002-9939-98-04379-2
- ELIAHOU, S. - KERVAIRE, M., Minimal resolutions of some monomial ideals, J. Algebra, 129 (1990), 1-25. Zbl0701.13006MR1037391DOI10.1016/0021-8693(90)90237-I
- HULETT, H. A. - MARTIN, H. M., Betti numbers of lexsegment ideals, J. Algebra, 275 (2004), 2, 629-638. Zbl1091.13014MR2052630DOI10.1016/S0021-8693(03)00383-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.