The Complete Monotonicity of a Function Studied by Miller and Moskowitz

Horst Alzer

Bollettino dell'Unione Matematica Italiana (2009)

  • Volume: 2, Issue: 2, page 449-452
  • ISSN: 0392-4041

Abstract

top
Let S ( x ) = l o g ( 1 + x ) + 0 1 [ 1 - ( 1 + t 2 ) x ] d t log t and F ( x ) = log 2 - S ( x ) ( 0 < x ) . We prove that F is completely monotonic on ( 0 , ) . This complements a result of Miller and Moskowitz (2006), who proved that F is positive and strictly decreasing on ( 0 , ) . The sequence { S ( k ) } ( k = 1 , 2 , ) plays a role in information theory.

How to cite

top

Alzer, Horst. "The Complete Monotonicity of a Function Studied by Miller and Moskowitz." Bollettino dell'Unione Matematica Italiana 2.2 (2009): 449-452. <http://eudml.org/doc/290567>.

@article{Alzer2009,
abstract = {Let $$S(x) = log(1+x) + \int\_\{0\}^\{1\} \left[ 1 - \left( \frac\{1+t\}\{2\} \right) ^\{x\} \right] \frac\{dt\}\{\log t\} \quad \text\{and\} \quad F(x) = \log 2 - S(x) \,\, (0 < x \in \mathbb\{R\}).$$ We prove that $F$ is completely monotonic on $(0,\infty)$. This complements a result of Miller and Moskowitz (2006), who proved that $F$ is positive and strictly decreasing on $(0,\infty)$. The sequence $\\{ S(k)\\}$$(k=1,2,\dots)$ plays a role in information theory.},
author = {Alzer, Horst},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {449-452},
publisher = {Unione Matematica Italiana},
title = {The Complete Monotonicity of a Function Studied by Miller and Moskowitz},
url = {http://eudml.org/doc/290567},
volume = {2},
year = {2009},
}

TY - JOUR
AU - Alzer, Horst
TI - The Complete Monotonicity of a Function Studied by Miller and Moskowitz
JO - Bollettino dell'Unione Matematica Italiana
DA - 2009/6//
PB - Unione Matematica Italiana
VL - 2
IS - 2
SP - 449
EP - 452
AB - Let $$S(x) = log(1+x) + \int_{0}^{1} \left[ 1 - \left( \frac{1+t}{2} \right) ^{x} \right] \frac{dt}{\log t} \quad \text{and} \quad F(x) = \log 2 - S(x) \,\, (0 < x \in \mathbb{R}).$$ We prove that $F$ is completely monotonic on $(0,\infty)$. This complements a result of Miller and Moskowitz (2006), who proved that $F$ is positive and strictly decreasing on $(0,\infty)$. The sequence $\{ S(k)\}$$(k=1,2,\dots)$ plays a role in information theory.
LA - eng
UR - http://eudml.org/doc/290567
ER -

References

top
  1. ALZER, H. - BERG, C., Some classes of completely monotonic functions, II, Ramanujan J., 11 (2006), 225-248. Zbl1110.26015MR2267677DOI10.1007/s11139-006-6510-5
  2. DUBOURDIEU, J., Sur un théorème de M. S. Bernstein relatif à la transformation de Laplace-Stieltjes, Compositio Math., 7 (1939), 96-111. Zbl65.0473.02MR436
  3. MILLER, A. R. - MOSKOWITZ, I. S., Difference of sums containing products of binomial coefficients and their logarithms, SIAM Review, 48 (2006), 318-325. Zbl1088.05006MR2240594DOI10.1137/S003614450444292X
  4. MOSKOWITZ, I. S. - NEWMAN, R. E. - CREPEAU, D. P. - MILLER, A. R., Covert channels and anonymizing networks, in: Proceedings of the 2003 Workshop on Privacy in the Electronic Society, P. Samarati and P. Syverson, eds., ACM (New York, 2003), 79-88. 
  5. WIDDER, D. V., The Laplace Transform, Princeton Univ. Press (Princeton, 1941). Zbl67.0384.01MR5923

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.