The Complete Monotonicity of a Function Studied by Miller and Moskowitz
Bollettino dell'Unione Matematica Italiana (2009)
- Volume: 2, Issue: 2, page 449-452
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topAlzer, Horst. "The Complete Monotonicity of a Function Studied by Miller and Moskowitz." Bollettino dell'Unione Matematica Italiana 2.2 (2009): 449-452. <http://eudml.org/doc/290567>.
@article{Alzer2009,
abstract = {Let $$S(x) = log(1+x) + \int\_\{0\}^\{1\} \left[ 1 - \left( \frac\{1+t\}\{2\} \right) ^\{x\} \right] \frac\{dt\}\{\log t\} \quad \text\{and\} \quad F(x) = \log 2 - S(x) \,\, (0 < x \in \mathbb\{R\}).$$ We prove that $F$ is completely monotonic on $(0,\infty)$. This complements a result of Miller and Moskowitz (2006), who proved that $F$ is positive and strictly decreasing on $(0,\infty)$. The sequence $\\{ S(k)\\}$$(k=1,2,\dots)$ plays a role in information theory.},
author = {Alzer, Horst},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {449-452},
publisher = {Unione Matematica Italiana},
title = {The Complete Monotonicity of a Function Studied by Miller and Moskowitz},
url = {http://eudml.org/doc/290567},
volume = {2},
year = {2009},
}
TY - JOUR
AU - Alzer, Horst
TI - The Complete Monotonicity of a Function Studied by Miller and Moskowitz
JO - Bollettino dell'Unione Matematica Italiana
DA - 2009/6//
PB - Unione Matematica Italiana
VL - 2
IS - 2
SP - 449
EP - 452
AB - Let $$S(x) = log(1+x) + \int_{0}^{1} \left[ 1 - \left( \frac{1+t}{2} \right) ^{x} \right] \frac{dt}{\log t} \quad \text{and} \quad F(x) = \log 2 - S(x) \,\, (0 < x \in \mathbb{R}).$$ We prove that $F$ is completely monotonic on $(0,\infty)$. This complements a result of Miller and Moskowitz (2006), who proved that $F$ is positive and strictly decreasing on $(0,\infty)$. The sequence $\{ S(k)\}$$(k=1,2,\dots)$ plays a role in information theory.
LA - eng
UR - http://eudml.org/doc/290567
ER -
References
top- ALZER, H. - BERG, C., Some classes of completely monotonic functions, II, Ramanujan J., 11 (2006), 225-248. Zbl1110.26015MR2267677DOI10.1007/s11139-006-6510-5
- DUBOURDIEU, J., Sur un théorème de M. S. Bernstein relatif à la transformation de Laplace-Stieltjes, Compositio Math., 7 (1939), 96-111. Zbl65.0473.02MR436
- MILLER, A. R. - MOSKOWITZ, I. S., Difference of sums containing products of binomial coefficients and their logarithms, SIAM Review, 48 (2006), 318-325. Zbl1088.05006MR2240594DOI10.1137/S003614450444292X
- MOSKOWITZ, I. S. - NEWMAN, R. E. - CREPEAU, D. P. - MILLER, A. R., Covert channels and anonymizing networks, in: Proceedings of the 2003 Workshop on Privacy in the Electronic Society, P. Samarati and P. Syverson, eds., ACM (New York, 2003), 79-88.
- WIDDER, D. V., The Laplace Transform, Princeton Univ. Press (Princeton, 1941). Zbl67.0384.01MR5923
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.