An Elliptic Problem with a Lower Order Term Having Singular Behaviour
Daniela Giachetti; François Murat
Bollettino dell'Unione Matematica Italiana (2009)
- Volume: 2, Issue: 2, page 349-370
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topGiachetti, Daniela, and Murat, François. "An Elliptic Problem with a Lower Order Term Having Singular Behaviour." Bollettino dell'Unione Matematica Italiana 2.2 (2009): 349-370. <http://eudml.org/doc/290568>.
@article{Giachetti2009,
abstract = {We prove the existence of distributional solutions to an elliptic problem with a lower order term which depends on the solution $u$ in a singular way and on its gradient $Du$ with quadratic growth. The prototype of the problem under consideration is $$\begin\{cases\} - \Delta u + \lambda u = \pm \frac\{|Du|^\{2\}\}\{|u|^\{k\}\} + f \quad & \text\{in\} \, \Omega, \\ u=0 & \text\{on\} \, \partial \Omega, \end\{cases\}$$ where $\lambda > 0$, $k > 0$; $f(x) \in L^\{\infty\}(\Omega)$, $f(x) \ge 0$ (and so $u \ge 0$). If $0 < k < 1$, we prove the existence of a solution for both the "+" and the "-" signs, while if $k \ge 1$, we prove the existence of a solution for the "+" sign only.},
author = {Giachetti, Daniela, Murat, François},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {349-370},
publisher = {Unione Matematica Italiana},
title = {An Elliptic Problem with a Lower Order Term Having Singular Behaviour},
url = {http://eudml.org/doc/290568},
volume = {2},
year = {2009},
}
TY - JOUR
AU - Giachetti, Daniela
AU - Murat, François
TI - An Elliptic Problem with a Lower Order Term Having Singular Behaviour
JO - Bollettino dell'Unione Matematica Italiana
DA - 2009/6//
PB - Unione Matematica Italiana
VL - 2
IS - 2
SP - 349
EP - 370
AB - We prove the existence of distributional solutions to an elliptic problem with a lower order term which depends on the solution $u$ in a singular way and on its gradient $Du$ with quadratic growth. The prototype of the problem under consideration is $$\begin{cases} - \Delta u + \lambda u = \pm \frac{|Du|^{2}}{|u|^{k}} + f \quad & \text{in} \, \Omega, \\ u=0 & \text{on} \, \partial \Omega, \end{cases}$$ where $\lambda > 0$, $k > 0$; $f(x) \in L^{\infty}(\Omega)$, $f(x) \ge 0$ (and so $u \ge 0$). If $0 < k < 1$, we prove the existence of a solution for both the "+" and the "-" signs, while if $k \ge 1$, we prove the existence of a solution for the "+" sign only.
LA - eng
UR - http://eudml.org/doc/290568
ER -
References
top- ARCOYA, D. - BARILE, S. - MARTÍNEZ-APARICIO, P. J., Singular quasilinear equations with quadratic growth in the gradient without sign condition, J. Math. Anal. Appl., 350 (2009), 401-408. Zbl1161.35013MR2476925DOI10.1016/j.jmaa.2008.09.073
- ARCOYA, D. - CARMONA, J. - LEONORI, T. - MARTÍNEZ-APARICIO, P. J. - ORSINA, L. - PETITTA, F., Quadratic quasilinear equations with general singularities, J. Differential Equations (2009).
- ARCOYA, D. - CARMONA, J. - MARTÍNEZ-APARICIO, P. J., Elliptic obstacle problems with natural growth on the gradient and singular nonlinear terms, Adv. Nonlinear Stud., 7 (2007), 299-317. Zbl1189.35136MR2308041DOI10.1515/ans-2007-0206
- ARCOYA, D. - MARTÍNEZ-APARICIO, P. J., Quasilinear equations with natural growth, Rev. Mat. Iberoamericana, 24 (2008), 597-616. Zbl1151.35343MR2459205DOI10.4171/RMI/548
- BOCCARDO, L., Dirichlet problems with singular and gradient quadratic lower order terms, ESAIM - Control, Optimisation and Calculus of Variations, 14 (2008), 411-426. Zbl1147.35034MR2434059DOI10.1051/cocv:2008031
- BOCCARDO, L. - MURAT, F. - PUEL, J.-P., Existence de solutions faibles pour des équations elliptiques quasi-linéaires à croissance quadratique, in Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, Vol. IV, ed. by H. Brezis & J.-L. Lions, Res. Notes in Math., 84 (1983), Pitman, Boston, 19-73. MR716511
- BOCCARDO, L. - MURAT, F. - PUEL, J.-P., Résultats d'existence pour certains problèmes elliptiques quasilinéaires, Ann. Scuola Norm. Sup. Pisa, 11 (1984), 213-235. Zbl0557.35051MR764943
- BOCCARDO, L. - MURAT, F. - PUEL, J.-P., Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl., 152 (1988), 183-196. Zbl0687.35042MR980979DOI10.1007/BF01766148
- BOCCARDO, L. - MURAT, F. - PUEL, J.-P., -estimate for some nonlinear elliptic partial differential equations and application to an existence result, SIAM J. Math. Anal., 23 (1992), 326-333. Zbl0785.35033MR1147866DOI10.1137/0523016
- DALL'AGLIO, A. - GIACHETTI, D. - PUEL, J.-P., Nonlinear elliptic equations with natural growth in general domains, Ann. Mat. Pura Appl., 181 (2002), 407-426. Zbl1097.35050MR1939689DOI10.1007/s102310100046
- FERONE, V. - MURAT, F., Quasilinear problems having quadratic growth in the gradient: an existence result when the source term is small, in Equations aux dérivées partielles et applications, articles dédiés à Jacques-Louis Lions, (1998), Gauthier-Villars, Paris, 497-515. Zbl0917.35039MR1648236
- FERONE, V. - MURAT, F., Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small, Nonlinear Anal. Th. Meth. Appl. Series A, 42 (2000), 1309-1326. Zbl1158.35358MR1780731DOI10.1016/S0362-546X(99)00165-0
- FERONE, V. - MURAT, F., Nonlinear elliptic equations with natural growth in the gradient and source terms in Lorentz spaces, to appear. Zbl1318.35031MR3121707DOI10.1016/j.jde.2013.09.013
- GIACHETTI, D. - MAROSCIA, G., Porous medium type equations with a quadratic gradient term, Boll. U.M.I. sez. B, 10 (2007), 753-759. Zbl1177.35124MR2351544
- GIACHETTI, D. - MAROSCIA, G., Existence results for a class of porous medium type equations with a quadratic gradient term, J. Evol. Eq., 8 (2008), 155-188. Zbl1142.35043MR2383486DOI10.1007/s00028-007-0362-3
- MARTÍNEZ-APARICIO, P. J., Singular quasilinear equations with quadratic gradient, to appear.
- PORRETTA, A. - SEGURA DE LEÓN, S., Nonlinear elliptic equations having a gradient term with natural growth, J. Math. Pures Appl., 85 (2006), 465-492. Zbl1158.35364MR2210085DOI10.1016/j.matpur.2005.10.009
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.