An Elliptic Problem with a Lower Order Term Having Singular Behaviour

Daniela Giachetti; François Murat

Bollettino dell'Unione Matematica Italiana (2009)

  • Volume: 2, Issue: 2, page 349-370
  • ISSN: 0392-4041

Abstract

top
We prove the existence of distributional solutions to an elliptic problem with a lower order term which depends on the solution u in a singular way and on its gradient D u with quadratic growth. The prototype of the problem under consideration is { - Δ u + λ u = ± | D u | 2 | u | k + f in Ω , u = 0 on Ω , where λ > 0 , k > 0 ; f ( x ) L ( Ω ) , f ( x ) 0 (and so u 0 ). If 0 < k < 1 , we prove the existence of a solution for both the "+" and the "-" signs, while if k 1 , we prove the existence of a solution for the "+" sign only.

How to cite

top

Giachetti, Daniela, and Murat, François. "An Elliptic Problem with a Lower Order Term Having Singular Behaviour." Bollettino dell'Unione Matematica Italiana 2.2 (2009): 349-370. <http://eudml.org/doc/290568>.

@article{Giachetti2009,
abstract = {We prove the existence of distributional solutions to an elliptic problem with a lower order term which depends on the solution $u$ in a singular way and on its gradient $Du$ with quadratic growth. The prototype of the problem under consideration is $$\begin\{cases\} - \Delta u + \lambda u = \pm \frac\{|Du|^\{2\}\}\{|u|^\{k\}\} + f \quad & \text\{in\} \, \Omega, \\ u=0 & \text\{on\} \, \partial \Omega, \end\{cases\}$$ where $\lambda > 0$, $k > 0$; $f(x) \in L^\{\infty\}(\Omega)$, $f(x) \ge 0$ (and so $u \ge 0$). If $0 < k < 1$, we prove the existence of a solution for both the "+" and the "-" signs, while if $k \ge 1$, we prove the existence of a solution for the "+" sign only.},
author = {Giachetti, Daniela, Murat, François},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {349-370},
publisher = {Unione Matematica Italiana},
title = {An Elliptic Problem with a Lower Order Term Having Singular Behaviour},
url = {http://eudml.org/doc/290568},
volume = {2},
year = {2009},
}

TY - JOUR
AU - Giachetti, Daniela
AU - Murat, François
TI - An Elliptic Problem with a Lower Order Term Having Singular Behaviour
JO - Bollettino dell'Unione Matematica Italiana
DA - 2009/6//
PB - Unione Matematica Italiana
VL - 2
IS - 2
SP - 349
EP - 370
AB - We prove the existence of distributional solutions to an elliptic problem with a lower order term which depends on the solution $u$ in a singular way and on its gradient $Du$ with quadratic growth. The prototype of the problem under consideration is $$\begin{cases} - \Delta u + \lambda u = \pm \frac{|Du|^{2}}{|u|^{k}} + f \quad & \text{in} \, \Omega, \\ u=0 & \text{on} \, \partial \Omega, \end{cases}$$ where $\lambda > 0$, $k > 0$; $f(x) \in L^{\infty}(\Omega)$, $f(x) \ge 0$ (and so $u \ge 0$). If $0 < k < 1$, we prove the existence of a solution for both the "+" and the "-" signs, while if $k \ge 1$, we prove the existence of a solution for the "+" sign only.
LA - eng
UR - http://eudml.org/doc/290568
ER -

References

top
  1. ARCOYA, D. - BARILE, S. - MARTÍNEZ-APARICIO, P. J., Singular quasilinear equations with quadratic growth in the gradient without sign condition, J. Math. Anal. Appl., 350 (2009), 401-408. Zbl1161.35013MR2476925DOI10.1016/j.jmaa.2008.09.073
  2. ARCOYA, D. - CARMONA, J. - LEONORI, T. - MARTÍNEZ-APARICIO, P. J. - ORSINA, L. - PETITTA, F., Quadratic quasilinear equations with general singularities, J. Differential Equations (2009). 
  3. ARCOYA, D. - CARMONA, J. - MARTÍNEZ-APARICIO, P. J., Elliptic obstacle problems with natural growth on the gradient and singular nonlinear terms, Adv. Nonlinear Stud., 7 (2007), 299-317. Zbl1189.35136MR2308041DOI10.1515/ans-2007-0206
  4. ARCOYA, D. - MARTÍNEZ-APARICIO, P. J., Quasilinear equations with natural growth, Rev. Mat. Iberoamericana, 24 (2008), 597-616. Zbl1151.35343MR2459205DOI10.4171/RMI/548
  5. BOCCARDO, L., Dirichlet problems with singular and gradient quadratic lower order terms, ESAIM - Control, Optimisation and Calculus of Variations, 14 (2008), 411-426. Zbl1147.35034MR2434059DOI10.1051/cocv:2008031
  6. BOCCARDO, L. - MURAT, F. - PUEL, J.-P., Existence de solutions faibles pour des équations elliptiques quasi-linéaires à croissance quadratique, in Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, Vol. IV, ed. by H. Brezis & J.-L. Lions, Res. Notes in Math., 84 (1983), Pitman, Boston, 19-73. MR716511
  7. BOCCARDO, L. - MURAT, F. - PUEL, J.-P., Résultats d'existence pour certains problèmes elliptiques quasilinéaires, Ann. Scuola Norm. Sup. Pisa, 11 (1984), 213-235. Zbl0557.35051MR764943
  8. BOCCARDO, L. - MURAT, F. - PUEL, J.-P., Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl., 152 (1988), 183-196. Zbl0687.35042MR980979DOI10.1007/BF01766148
  9. BOCCARDO, L. - MURAT, F. - PUEL, J.-P., L -estimate for some nonlinear elliptic partial differential equations and application to an existence result, SIAM J. Math. Anal., 23 (1992), 326-333. Zbl0785.35033MR1147866DOI10.1137/0523016
  10. DALL'AGLIO, A. - GIACHETTI, D. - PUEL, J.-P., Nonlinear elliptic equations with natural growth in general domains, Ann. Mat. Pura Appl., 181 (2002), 407-426. Zbl1097.35050MR1939689DOI10.1007/s102310100046
  11. FERONE, V. - MURAT, F., Quasilinear problems having quadratic growth in the gradient: an existence result when the source term is small, in Equations aux dérivées partielles et applications, articles dédiés à Jacques-Louis Lions, (1998), Gauthier-Villars, Paris, 497-515. Zbl0917.35039MR1648236
  12. FERONE, V. - MURAT, F., Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small, Nonlinear Anal. Th. Meth. Appl. Series A, 42 (2000), 1309-1326. Zbl1158.35358MR1780731DOI10.1016/S0362-546X(99)00165-0
  13. FERONE, V. - MURAT, F., Nonlinear elliptic equations with natural growth in the gradient and source terms in Lorentz spaces, to appear. Zbl1318.35031MR3121707DOI10.1016/j.jde.2013.09.013
  14. GIACHETTI, D. - MAROSCIA, G., Porous medium type equations with a quadratic gradient term, Boll. U.M.I. sez. B, 10 (2007), 753-759. Zbl1177.35124MR2351544
  15. GIACHETTI, D. - MAROSCIA, G., Existence results for a class of porous medium type equations with a quadratic gradient term, J. Evol. Eq., 8 (2008), 155-188. Zbl1142.35043MR2383486DOI10.1007/s00028-007-0362-3
  16. MARTÍNEZ-APARICIO, P. J., Singular quasilinear equations with quadratic gradient, to appear. 
  17. PORRETTA, A. - SEGURA DE LEÓN, S., Nonlinear elliptic equations having a gradient term with natural growth, J. Math. Pures Appl., 85 (2006), 465-492. Zbl1158.35364MR2210085DOI10.1016/j.matpur.2005.10.009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.