Porous Medium Type Equations with a Quadratic Gradient Term
Daniela Giachetti; Giulia Maroscia
Bollettino dell'Unione Matematica Italiana (2007)
- Volume: 10-B, Issue: 3, page 753-759
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topGiachetti, Daniela, and Maroscia, Giulia. "Porous Medium Type Equations with a Quadratic Gradient Term." Bollettino dell'Unione Matematica Italiana 10-B.3 (2007): 753-759. <http://eudml.org/doc/290394>.
@article{Giachetti2007,
abstract = {We show an existence result for the Cauchy-Dirichlet problem in $Q_T = \Omega \times (0, T)$ for parabolic equations with degenerate principal part (of porous medium type) with a lower order term having a quadratic growth with respect to the gradient. The right hand side of the equation $f$ and the initial datum $u_0$ are bounded nonnegative functions.},
author = {Giachetti, Daniela, Maroscia, Giulia},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {753-759},
publisher = {Unione Matematica Italiana},
title = {Porous Medium Type Equations with a Quadratic Gradient Term},
url = {http://eudml.org/doc/290394},
volume = {10-B},
year = {2007},
}
TY - JOUR
AU - Giachetti, Daniela
AU - Maroscia, Giulia
TI - Porous Medium Type Equations with a Quadratic Gradient Term
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/10//
PB - Unione Matematica Italiana
VL - 10-B
IS - 3
SP - 753
EP - 759
AB - We show an existence result for the Cauchy-Dirichlet problem in $Q_T = \Omega \times (0, T)$ for parabolic equations with degenerate principal part (of porous medium type) with a lower order term having a quadratic growth with respect to the gradient. The right hand side of the equation $f$ and the initial datum $u_0$ are bounded nonnegative functions.
LA - eng
UR - http://eudml.org/doc/290394
ER -
References
top- ANDREU, F. - MAZON, J. M. - SIMONDON, F. - TOLEDO, J., Global existence for a degenerate nonlinear diffusion problem with nonlinear gradient term and source, Math. Ann., 314 (1999), 703-728. Zbl0926.35068MR1709107DOI10.1007/s002080050313
- BOCCARDO, L. - MURAT, F. - PUEL, J. P., Existence results for some quasilinear parabolic equations, Nonlinear Anal. T.M.A., 13, 4 (1989), 373-392. Zbl0705.35066MR987375DOI10.1016/0362-546X(89)90045-X
- DALL'AGLIO, A. - GIACHETTI, D. - LEONE, C. - SEGURA DE LEON, S., Quasi-linear Parabolic Equations With Degenerate Coercivity having a Quadratic Gradient Term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23, 1 (2006), 97-126. Zbl1103.35040MR2194583DOI10.1016/j.anihpc.2005.02.006
- DI BENEDETTO, E. - URBANO, J. M. - VESPRI, V., Current issues on singular and degenerate evolution equations, in Evolutionary Equations. Vol. I, Handb. Differ. Equ., 169-286, North-Holland, Amsterdam, The Netherlands (2004). Zbl1082.35002MR2103698
- GAGNEUX, G. - MADAUNE-TORT, M., Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière, Mathématiqes and Applications, 22, SMAI (1996). Zbl0842.35126MR1616513
- LIONS, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris (1969). Zbl0189.40603MR259693
- MAROSCIA, G., Boundary value problems for quasilinear degenerate equations modeling fluid flows in porous media, Ph. D. Thesis, Università di Roma ``La Sapienza'' (2006).
- PORZIO, M. M. - VESPRI, V., Holder Estimates for Local Solutions of Some Doubly Nonlinear Degenerate Parabolic Equations, J. Differential Equations, 103, 1 (1993), 146-178. Zbl0796.35089MR1218742DOI10.1006/jdeq.1993.1045
- VAZQUEZ, J. L., The Porous Medium Equation. Mathematical Theory, Oxford Univ. Press (2006). Zbl1124.35035MR2286292
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.