Asymptotic Formulae for Bernstein-Schnabl Operators and Smoothness
Bollettino dell'Unione Matematica Italiana (2009)
- Volume: 2, Issue: 1, page 135-150
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topReferences
top- ALTOMARE, F., Limit semigroups of Bernstein-Schnabl operators associated with positive projections, Ann. Sc. Norm. Sup. Pisa, Cl. Sci. (4), 16, n. 2 (1989), 259-279. Zbl0706.47022MR1041898
- ALTOMARE, F. - CAMPITI, M., Korovkin-Type Approximation Theory and its Applications, De Gruyter Studies in Mathematics, 17, Walter de Gruyter, Berlin-New York, 1994. Zbl0924.41001MR1292247DOI10.1515/9783110884586
- ALTOMARE, F. - LEONESSA, V. - RASA, I., On Bernstein-Schnabl operators on the unit interval, J. for Anal. and its Appl., 27, 3 (2008), 353-379. Zbl1140.41304MR2411481DOI10.4171/ZAA/1360
- AMEL'KOVIC, V. G., A theorem converse to a theorem of Voronovskaja type, Teor. Funkcii Funkcional Anal. i Prilozen, 2 (1966), 67-74. MR203329
- W. ARENDT - A. GRABOSCH - G. GREINER - U. GROH - H. P. LOTZ - U. MOUSTAKAS, R. NAGEL (ed.) - NEUBRANDER, F. - SCHLOTTERBECK, U., One-parameter Semigroups of Positive Operators, Lecture Notes in Math., 1184 (Springer-Verlag, Berlin, 1986). MR839450DOI10.1007/BFb0074922
- BERENS, H. - LORENTZ, G. G., Inverse theorems for Bernstein polynomials, Indiana Univ. Math. Journal, 21, no. 8 (1972), 693-708. Zbl0262.41006MR296579DOI10.1512/iumj.1972.21.21054
- BUTZER, P. L. - BERENS, H., Semi-groups of Operators and Approximation, Die Grundlehren der mathematischen Wissenschaften, 145 (Springer-Verlag, Berlin, 1967). Zbl0164.43702MR230022
- CLÉMENT, PH. - TIMMERMANS, C. A., On -semigroups generated by differential operators satisfying Wentcel's boundary conditions, Indag. Math., 89 (1986), 379-387. Zbl0618.47035MR869754
- DE LEEUW, K., On the degree of approximation by Bernstein polynomials, J. Analyse Math., 7 (1959), 89-104. Zbl0094.10601MR113075DOI10.1007/BF02787682
- DE VORE, R. A. - LORENTZ, G. G., Constructive Approximation, Grundlehren der mathematischen Wissenschaften, 303 (Springer-Verlag, Berlin, 1993). MR1261635DOI10.1007/978-3-662-02888-9
- K. - ENGEL, J. - NAGEL, R., One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194 (Springer, New York-Berlin, 2000). Zbl0952.47036MR1721989
- GROSSMAN, M. W., Note on a generalized Bohman-Korovkin theorem, J. Math. Anal. Appl., 45 (1974), 43-46. Zbl0269.41019MR336171DOI10.1016/0022-247X(74)90118-8
- LORENTZ, G. G., Approximation of Functions, 2nd Ed., Chelsea Publ. Comp., New York, N.Y., 1986. Zbl0643.41001MR917270
- LORENTZ, G. G., Bernstein Polynomials, 2nd Ed., Chelsea Publ. Comp., New York, N.Y., 1986. MR864976
- MICCHELLI, C. A., The saturation class and iterates of the Bernstein polynomials, J. Approx. Theory, 8 (1973), 1-18. Zbl0258.41012MR344757DOI10.1016/0021-9045(73)90028-2
- RASA, I., Generalized Bernstein operators and convex functions, Studia Univ. "Babeş-Bolyai", Math., 33, no. 2 (1988), 36-39. Zbl0686.41020MR1004816
- SCHNABL, R., Eine Verallgemeinerung der Bernsteinpolynome, Math. Ann., 179 (1968), 74-82. MR236586DOI10.1007/BF01350212
- TAIRA, K., Diffusion Processes and Partial Differential Equations, Academic Press, Boston-San Diego-London-Tokyo, 1988. Zbl0652.35003MR954835
- VORONOVSKAJA, E. V., The asymptotic properties of the approximation of functions with Bernstein polynomials, Dokl. Akad. Nauk. SSSR, A (1932), 79-85. Zbl58.1062.04