Asymptotic Formulae for Bernstein-Schnabl Operators and Smoothness

Francesco Altomare

Bollettino dell'Unione Matematica Italiana (2009)

  • Volume: 2, Issue: 1, page 135-150
  • ISSN: 0392-4041

Abstract

top
Of concern are Bernstein-Schnabl operators associated with a continuous selection of Borel measures on the unit interval. With respect to these sequences of positive linear operators we determine the classes of all continuous functions verifying a pointwise asymptotic formula or a uniform one. Our methods are essentially based on a general characterization of the domains of Feller semigroups in terms of asymptotic formulae and on the determination of both the saturation class of Bernstein-Schnabl operators and the Favard class of the relevant Feller semigroup.

How to cite

top

Altomare, Francesco. "Asymptotic Formulae for Bernstein-Schnabl Operators and Smoothness." Bollettino dell'Unione Matematica Italiana 2.1 (2009): 135-150. <http://eudml.org/doc/290570>.

@article{Altomare2009,
abstract = {Of concern are Bernstein-Schnabl operators associated with a continuous selection of Borel measures on the unit interval. With respect to these sequences of positive linear operators we determine the classes of all continuous functions verifying a pointwise asymptotic formula or a uniform one. Our methods are essentially based on a general characterization of the domains of Feller semigroups in terms of asymptotic formulae and on the determination of both the saturation class of Bernstein-Schnabl operators and the Favard class of the relevant Feller semigroup.},
author = {Altomare, Francesco},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {135-150},
publisher = {Unione Matematica Italiana},
title = {Asymptotic Formulae for Bernstein-Schnabl Operators and Smoothness},
url = {http://eudml.org/doc/290570},
volume = {2},
year = {2009},
}

TY - JOUR
AU - Altomare, Francesco
TI - Asymptotic Formulae for Bernstein-Schnabl Operators and Smoothness
JO - Bollettino dell'Unione Matematica Italiana
DA - 2009/2//
PB - Unione Matematica Italiana
VL - 2
IS - 1
SP - 135
EP - 150
AB - Of concern are Bernstein-Schnabl operators associated with a continuous selection of Borel measures on the unit interval. With respect to these sequences of positive linear operators we determine the classes of all continuous functions verifying a pointwise asymptotic formula or a uniform one. Our methods are essentially based on a general characterization of the domains of Feller semigroups in terms of asymptotic formulae and on the determination of both the saturation class of Bernstein-Schnabl operators and the Favard class of the relevant Feller semigroup.
LA - eng
UR - http://eudml.org/doc/290570
ER -

References

top
  1. ALTOMARE, F., Limit semigroups of Bernstein-Schnabl operators associated with positive projections, Ann. Sc. Norm. Sup. Pisa, Cl. Sci. (4), 16, n. 2 (1989), 259-279. Zbl0706.47022MR1041898
  2. ALTOMARE, F. - CAMPITI, M., Korovkin-Type Approximation Theory and its Applications, De Gruyter Studies in Mathematics, 17, Walter de Gruyter, Berlin-New York, 1994. Zbl0924.41001MR1292247DOI10.1515/9783110884586
  3. ALTOMARE, F. - LEONESSA, V. - RASA, I., On Bernstein-Schnabl operators on the unit interval, J. for Anal. and its Appl., 27, 3 (2008), 353-379. Zbl1140.41304MR2411481DOI10.4171/ZAA/1360
  4. AMEL'KOVIC, V. G., A theorem converse to a theorem of Voronovskaja type, Teor. Funkcii Funkcional Anal. i Prilozen, 2 (1966), 67-74. MR203329
  5. W. ARENDT - A. GRABOSCH - G. GREINER - U. GROH - H. P. LOTZ - U. MOUSTAKAS, R. NAGEL (ed.) - NEUBRANDER, F. - SCHLOTTERBECK, U., One-parameter Semigroups of Positive Operators, Lecture Notes in Math., 1184 (Springer-Verlag, Berlin, 1986). MR839450DOI10.1007/BFb0074922
  6. BERENS, H. - LORENTZ, G. G., Inverse theorems for Bernstein polynomials, Indiana Univ. Math. Journal, 21, no. 8 (1972), 693-708. Zbl0262.41006MR296579DOI10.1512/iumj.1972.21.21054
  7. BUTZER, P. L. - BERENS, H., Semi-groups of Operators and Approximation, Die Grundlehren der mathematischen Wissenschaften, 145 (Springer-Verlag, Berlin, 1967). Zbl0164.43702MR230022
  8. CLÉMENT, PH. - TIMMERMANS, C. A., On C 0 -semigroups generated by differential operators satisfying Wentcel's boundary conditions, Indag. Math., 89 (1986), 379-387. Zbl0618.47035MR869754
  9. DE LEEUW, K., On the degree of approximation by Bernstein polynomials, J. Analyse Math., 7 (1959), 89-104. Zbl0094.10601MR113075DOI10.1007/BF02787682
  10. DE VORE, R. A. - LORENTZ, G. G., Constructive Approximation, Grundlehren der mathematischen Wissenschaften, 303 (Springer-Verlag, Berlin, 1993). MR1261635DOI10.1007/978-3-662-02888-9
  11. K. - ENGEL, J. - NAGEL, R., One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194 (Springer, New York-Berlin, 2000). Zbl0952.47036MR1721989
  12. GROSSMAN, M. W., Note on a generalized Bohman-Korovkin theorem, J. Math. Anal. Appl., 45 (1974), 43-46. Zbl0269.41019MR336171DOI10.1016/0022-247X(74)90118-8
  13. LORENTZ, G. G., Approximation of Functions, 2nd Ed., Chelsea Publ. Comp., New York, N.Y., 1986. Zbl0643.41001MR917270
  14. LORENTZ, G. G., Bernstein Polynomials, 2nd Ed., Chelsea Publ. Comp., New York, N.Y., 1986. MR864976
  15. MICCHELLI, C. A., The saturation class and iterates of the Bernstein polynomials, J. Approx. Theory, 8 (1973), 1-18. Zbl0258.41012MR344757DOI10.1016/0021-9045(73)90028-2
  16. RASA, I., Generalized Bernstein operators and convex functions, Studia Univ. "Babeş-Bolyai", Math., 33, no. 2 (1988), 36-39. Zbl0686.41020MR1004816
  17. SCHNABL, R., Eine Verallgemeinerung der Bernsteinpolynome, Math. Ann., 179 (1968), 74-82. MR236586DOI10.1007/BF01350212
  18. TAIRA, K., Diffusion Processes and Partial Differential Equations, Academic Press, Boston-San Diego-London-Tokyo, 1988. Zbl0652.35003MR954835
  19. VORONOVSKAJA, E. V., The asymptotic properties of the approximation of functions with Bernstein polynomials, Dokl. Akad. Nauk. SSSR, A (1932), 79-85. Zbl58.1062.04

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.