Limit semigroups of Bernstein-Schnabl operators associated with positive projections

Francesco Altomare

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1989)

  • Volume: 16, Issue: 2, page 259-279
  • ISSN: 0391-173X

How to cite

top

Altomare, Francesco. "Limit semigroups of Bernstein-Schnabl operators associated with positive projections." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 16.2 (1989): 259-279. <http://eudml.org/doc/84054>.

@article{Altomare1989,
author = {Altomare, Francesco},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {compact convex subset of a locally convex Hausdorff space; Banach lattice of all continuous real-valued functions; positive operators; Bernstein- Schnabl operator; infinite lower triangular stochastic matrix; selection of representing measures; Bauer simplex},
language = {eng},
number = {2},
pages = {259-279},
publisher = {Scuola normale superiore},
title = {Limit semigroups of Bernstein-Schnabl operators associated with positive projections},
url = {http://eudml.org/doc/84054},
volume = {16},
year = {1989},
}

TY - JOUR
AU - Altomare, Francesco
TI - Limit semigroups of Bernstein-Schnabl operators associated with positive projections
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1989
PB - Scuola normale superiore
VL - 16
IS - 2
SP - 259
EP - 279
LA - eng
KW - compact convex subset of a locally convex Hausdorff space; Banach lattice of all continuous real-valued functions; positive operators; Bernstein- Schnabl operator; infinite lower triangular stochastic matrix; selection of representing measures; Bauer simplex
UR - http://eudml.org/doc/84054
ER -

References

top
  1. [1] F. Altomare, Proiettori positivi, famiglie risolventi e problema di Dirichlet, Ricerche Mat., Vol. XXVI (1977), 1, 63-78. Zbl0368.46029MR626371
  2. [2] F. Altomare, Operatori di Lion sul prodotto di spazi compatti, semigruppi di operatori positivi e problemi di Dirichlet, Ricerche Mat., Vol. XXVIII (1978), 1, 33-58. Zbl0389.46013MR524683
  3. [3] F. Altomare, Teoremi di approssimazione di tipo Korovkin in spazi di funzioni, Rend. Mat., (6), 13 (1980), no. 3, 409-429. Zbl0455.41010MR609483
  4. [4] D.H. Armitage, A linear function from a space of polynomials onto a space of harmonic polynomials, J. London Math. Soc. (2), 5 (1972), 529-538. Zbl0244.31007MR315152
  5. [5] H. Bauer, Theorems of Korovkin type for adapted spaces, Ann. Inst. Fourier (Grenoble) 23 (1973), 245-260. Zbl0262.31005MR358178
  6. [6] H. Berens - G.G. Lorentz, Geometric theory of Korovkin sets, J. Approx. Theory15 (1975), 161-189. Zbl0322.41018MR390599
  7. [7] M. Brelot - G. Choquet, Polynômes harmoniques et polyharmoniques, Second Colloque sur les équations aux dérivées partielles (Bruxelles, 1954). Zbl0066.31802MR69968
  8. [8] M.R. Da Silva, Nonnegative order iterates of Bernstein polynomials and their limiting semigroups, Portugal Math.42 (1983-84), no. 3, 225-248 (1985). Zbl0562.41007MR819903
  9. [9] G. Felbecker - W. Schempp, A generalization of Bohman-Korovkin's theorem, Math. Z.122 (1971) 63-70. Zbl0203.13004MR291698
  10. [10] J.A. Goldstein, Semigroups of linear operators and applications, Oxford University Press, New York, 1985. Zbl0592.47034MR790497
  11. [11] M.W. Grossman, Note on a generalized Bohman-Korovkin theorem, J. Math. Anal. Appl.45 (1974), 43-46. Zbl0269.41019MR336171
  12. [12] S. Karlin - Z. Ziegler, Iteration of positive approximation operators, J. Approx. Theory3 (1970), 310-339. Zbl0199.44702MR277982
  13. [13] R.P. Keliski - T.J. Rivlin, Iterates of Bernstein polynomials, Pacific J. Math.21 (1967), no. 3, 511-520. Zbl0177.31302MR212457
  14. [14] C.A. Micchelli, The saturation class and iterates of the Bernstein polynomials, J. Approx. Theory, 8 (1973), 1-18. Zbl0258.41012MR344757
  15. [15] J. Nagel, Asymptotic properties of powers of Bernstein operators, J. Approx. Theory, 29 (1980) 323-335. Zbl0454.41016MR598726
  16. [16] R. Nageled., One-parameter semigroups of positive operators, Lecture Notes in Mathematics, n. 1184, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1986. Zbl0585.47030MR839450
  17. [17] T. Nishishiraho, A generalization of the Bernstein polynomials and limit of its iterations, Sci. Rep. Kanazawa Univ., 19 (1974), no. 1, 1-7. Zbl0305.41012MR358189
  18. [18] T. Nishishiraho, Saturation of positive linear operators, Tôhoku Math. J.28 (1976), 239-243. Zbl0327.41018MR415153
  19. [19] T. Nishishiraho, The degree of convergence of positive linear operators, Tôhoku Math. J.29 (1977), 81-89. Zbl0345.41011MR438003
  20. [20] T. Nishishiraho, Saturation of bounded linear operators, Tôhoku Math. J.30 (1978), 69-81. Zbl0379.41013MR493510
  21. [21] T. Nishishiraho, Convergence of positive linear approximation processes, Tôhoku Math. J. (2) 35 (1983) n. 3, 441-458. Zbl0525.41019MR711359
  22. [22] T. Nishishiraho, The convergence and saturation of iterations of positive linear operators, Math. Z.194, 397-404 (1987). Zbl0596.41036MR879940
  23. [23] W. Schempp, A note on Korovkin test families, Arch. Math.23 (1972) 521-524. Zbl0229.41013MR318854
  24. [24] R. Schnabl, Eine Verallgemeinerung der Bernsteinpolynome, Math. Ann.179 (1968), 74-82. Zbl0165.38401MR236586
  25. [25] R. Schnabl, Zum Saturationsproblem der Verallgemeinerten Bernsteinoperatoren, Proc. Conf. on "Abstract spaces and approximation" held at Oberwolfach, July 18-27, 1968, edited by P.L. Butzer and B.Sz.-Nagy, BirkhäuserBasel, 1969, 281-289. Zbl0186.37901MR271610
  26. [26] R. Schnabl, Über Gleichmäßige Approximation durch Positive Lineare Operatoren, Constructive theory of functions (Proc. Internat. Conf. Vama, 1970) 287-296, Izdat. Bolgar. Akad. Nauk Sofia, 1972. Zbl0239.46054MR370012
  27. [27] P.C. Sikkema, Über Potenzen von Verallgemeinerten Bernstein Operatoren, Mathematica (Cluj) 8-31, 1 (1966), 173-180. Zbl0166.31801MR209735
  28. [28] H.F. Trotter, Approximation of semi-groups of operators, Pacific J. Math.8 (1958), 887-919. Zbl0099.10302MR103420

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.