Périodes évanescentes et (a,b)-modules monogènes

Daniel Barlet

Bollettino dell'Unione Matematica Italiana (2009)

  • Volume: 2, Issue: 3, page 651-697
  • ISSN: 0392-4041

Abstract

top
In order to describe the asymptotic behaviour of a vanishing period in the degeneration of a one parameter family of complex manifolds, we introduce and use a very simple algebraic structure encoding the corresponding filtered Gauss-Manin connection: regular geometric (a,b)-module generated (as left A ~ -modules) by one element. The idea is to use not the full Brieskorn module associated to the Gauss-Manin connection but the minimal (regular) filtered differential equation satisfied by the period integral we are interested in. We show that the Bernstein polynomial associated is quite simple to compute for such (a,b)-modules and give a precise description of the exponents which appears in the asymptotic expansion which avoids integral shifts. We show the efficiency of this tool on a couple of explicit computations in some classical (but not so easy) examples.

How to cite

top

Barlet, Daniel. "Périodes évanescentes et (a,b)-modules monogènes." Bollettino dell'Unione Matematica Italiana 2.3 (2009): 651-697. <http://eudml.org/doc/290588>.

@article{Barlet2009,
abstract = {In order to describe the asymptotic behaviour of a vanishing period in the degeneration of a one parameter family of complex manifolds, we introduce and use a very simple algebraic structure encoding the corresponding filtered Gauss-Manin connection: regular geometric (a,b)-module generated (as left $\widetilde\{A\}$-modules) by one element. The idea is to use not the full Brieskorn module associated to the Gauss-Manin connection but the minimal (regular) filtered differential equation satisfied by the period integral we are interested in. We show that the Bernstein polynomial associated is quite simple to compute for such (a,b)-modules and give a precise description of the exponents which appears in the asymptotic expansion which avoids integral shifts. We show the efficiency of this tool on a couple of explicit computations in some classical (but not so easy) examples.},
author = {Barlet, Daniel},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {651-697},
publisher = {Unione Matematica Italiana},
title = {Périodes évanescentes et (a,b)-modules monogènes},
url = {http://eudml.org/doc/290588},
volume = {2},
year = {2009},
}

TY - JOUR
AU - Barlet, Daniel
TI - Périodes évanescentes et (a,b)-modules monogènes
JO - Bollettino dell'Unione Matematica Italiana
DA - 2009/10//
PB - Unione Matematica Italiana
VL - 2
IS - 3
SP - 651
EP - 697
AB - In order to describe the asymptotic behaviour of a vanishing period in the degeneration of a one parameter family of complex manifolds, we introduce and use a very simple algebraic structure encoding the corresponding filtered Gauss-Manin connection: regular geometric (a,b)-module generated (as left $\widetilde{A}$-modules) by one element. The idea is to use not the full Brieskorn module associated to the Gauss-Manin connection but the minimal (regular) filtered differential equation satisfied by the period integral we are interested in. We show that the Bernstein polynomial associated is quite simple to compute for such (a,b)-modules and give a precise description of the exponents which appears in the asymptotic expansion which avoids integral shifts. We show the efficiency of this tool on a couple of explicit computations in some classical (but not so easy) examples.
LA - eng
UR - http://eudml.org/doc/290588
ER -

References

top
  1. A'CAMPO, N., Sur la monodromie des singularités isolées d'hypersurfaces complexes, Inv. Math., 20 (1973), 147-169. MR338436DOI10.1007/BF01404063
  2. ARNOLD, V. - GOUSSEIN-ZADÉ, S. - VARCHENKO, A., Singularités des applications différentiables, édition MIR, volume 2 (Moscou, 1985). 
  3. BRIESKORN, E., Die Monodromie der Isolierten Singularita Èten von Hyperflächen, Manuscripta Math., 2 (1970), 103-161. Zbl0186.26101MR267607DOI10.1007/BF01155695
  4. BARLET, D., Théorie des (a,b)-modules I, in Complex Analysis and Geometry, Plenum Press, (1993), 1-43. Zbl0824.14002MR1211877
  5. BARLET, D., Théorie des (a,b)-modules II. Extensions, in Complex Analysis and Geometry, Pitman Research Notes in Mathematics Series366Longman (1997), 19-59. Zbl0935.32023MR1477438
  6. BARLET, D., Module de Brieskorn et forme hermitiennes pour une singularité isolée d'hypersuface, revue de l'Inst. E. Cartan (Nancy), 18 (2005), 19-46. MR2205835
  7. BARLET, D., Sur certaines singularités d'hypersurfaces II, J. Alg. Geom., 17 (2008), 199-254. Zbl1138.32015MR2369085DOI10.1090/S1056-3911-07-00492-4
  8. BARLET, D., Sur les fonctions a singularité de dimension 1 (version révisée), preprint Institut E. Cartan (Nancy), n. 42 (2008), 1-26, arXiv:0709.0459 (math. CV and math. AG) À paraȋtre au Bulletin de la SMF. MR2572182DOI10.24033/bsmf.2583
  9. BARLET, D., Two finiteness theorem for regular (a,b)-modules, preprint Institut E. Cartan (Nancy) n. 5 (2008), 1-38, arXiv:0801.4320 (math. AG and math. CV). 
  10. BARLET, D. - SAITO, M., Brieskorn modules and Gauss-Manin systems for non isolated hypersurface singularities, J. Lond. Math. Soc. (2), 76 n. 1 (2007), 211-224. Zbl1169.32004MR2351618DOI10.1112/jlms/jdm027
  11. MALGRANGE, B., Le polynôme de Bernstein d'une singularité isolée, in Lect. Notes in Math., 459 (Springer, 1975), 98-119. MR419827
  12. SAITO, M., On the structure of Brieskorn lattices, Ann. Inst. Fourier, 39 (1989), 27-72. Zbl0644.32005MR1011977
  13. SCHERK, J., On the Gauss-Manin connectio of an isolated hypersurface singularity, Math. Ann., 238 (1978), 23-32. Zbl0409.32004MR510303DOI10.1007/BF01351450

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.