Complex Structures and Conformal Geometry
Bollettino dell'Unione Matematica Italiana (2009)
- Volume: 2, Issue: 1, page 199-224
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topSalamon, Simon. "Complex Structures and Conformal Geometry." Bollettino dell'Unione Matematica Italiana 2.1 (2009): 199-224. <http://eudml.org/doc/290589>.
@article{Salamon2009,
abstract = {A characterization of certain complex structures on conformally-flat domains in real dimension 4 is carried out in the context of Hermitian geometry and twistor spaces. The presentation is motivated by some classical surface theory, whilst the problem itself leads to a refined classification of quadrics in complex projective 3-space. The main results are sandwiched between general facts in real dimension 2n and some concluding examples in real dimension 6.},
author = {Salamon, Simon},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {199-224},
publisher = {Unione Matematica Italiana},
title = {Complex Structures and Conformal Geometry},
url = {http://eudml.org/doc/290589},
volume = {2},
year = {2009},
}
TY - JOUR
AU - Salamon, Simon
TI - Complex Structures and Conformal Geometry
JO - Bollettino dell'Unione Matematica Italiana
DA - 2009/2//
PB - Unione Matematica Italiana
VL - 2
IS - 1
SP - 199
EP - 224
AB - A characterization of certain complex structures on conformally-flat domains in real dimension 4 is carried out in the context of Hermitian geometry and twistor spaces. The presentation is motivated by some classical surface theory, whilst the problem itself leads to a refined classification of quadrics in complex projective 3-space. The main results are sandwiched between general facts in real dimension 2n and some concluding examples in real dimension 6.
LA - eng
UR - http://eudml.org/doc/290589
ER -
References
top- APOSTOLOV, V. - GAUDUCHON, P. - GRANTCHAROV, G., Bi-Hermitian structures on complex surfaces, Proc. London Math. Soc. (3), 79, 2 (1999), 414-428. Zbl1035.53061MR1702248DOI10.1112/S0024611599012058
- APOSTOLOV, V. - GRANTCHAROV, G. - IVANOV, S., Orthogonal complex structures on certain Riemannian 6-manifolds, Differ. Geom. Appl., 11 (1999), 279-296. Zbl0964.53032MR1726543DOI10.1016/S0926-2245(99)00041-8
- APOSTOLOV, V. - GUALTIERI, M., Generalized Kähler manifolds, commuting complex structures, and split tangent bundles, Comm. Math. Phys., 271 (2007), 561-575. Zbl1135.53018MR2287917DOI10.1007/s00220-007-0196-4
- ATIYAH, M. F. - HITCHIN, N. J. - SINGER, I. M., Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A, 362, 1711 (1978), 425-461. Zbl0389.53011MR506229DOI10.1098/rspa.1978.0143
- ATIYAH, M. F. - WARD, R. S., Instantons and algebraic geometry, Comm. Math. Phys., 55 (1977), 117-124. Zbl0362.14004MR494098
- BAIRD, P. - WOOD, J. C., Harmonic Morphisms between Riemannian Manifolds, volume 29 of London Mathematical Society Monographs, Oxford University Press (Oxford, 2003). Zbl1055.53049MR2044031DOI10.1093/acprof:oso/9780198503620.001.0001
- BÉRARD BERGERY, L. - OCHIAI, T., On some generalizations of the construction of twistor spaces. In Global Riemannian geometry (Durham, 1983) (Ellis Horwood, Chichester, 1984), 52-59. MR757205
- BESSE, A. L., Einstein Manifolds, Springer, Berlin, 1987. MR867684DOI10.1007/978-3-540-74311-8
- BISHOP, E., Conditions for the analyticity of certain sets, Michigan Math. J., 11 (1964), 289-304. Zbl0143.30302MR168801
- BORISOV, L. - SALAMON, S. - VIACLOVSKY, J., Orthogonal complex structures in Euclidean spaces, In preparation.
- BRYANT, R. L., Submanifolds and special structures on the octonians, J. Differ. Geom., 17 (1982), 185-232. Zbl0526.53055MR664494
- BRYANT, R. L., Lie groups and twistor spaces, Duke Math. J., 52 (1985), 223-261. Zbl0582.58011MR791300DOI10.1215/S0012-7094-85-05213-5
- BURSTALL, F. E. - RAWNSLEY, J. H., Twistor Theory for Riemannian Symmetric Spaces, Lecture Notes Math.1424 (Springer-VerlagBerlin, 1990). Zbl0699.53059MR1059054DOI10.1007/BFb0095561
- CALABI, E., Construction and properties of some 6-dimensional almost complex manifolds, Trans. Amer. Math. Soc., 87 (1958), 407-438. Zbl0080.37601MR130698DOI10.2307/1993108
- CARTAN, É., The Theory of Spinors, Dover Publications Inc. (New York, 1981). With a foreword by Raymond Streater, A reprint of the 1966 English translation, Dover Books on Advanced Mathematics. Zbl0489.53010MR631850
- CHERN, S. S., An elementary proof of the existence of isothermal parameters on a surface, Proc. Amer. Math. Soc., 6 (1955), 771-782. Zbl0066.15402MR74856DOI10.2307/2032933
- DONALDSON, S. K. - FINE, J., Toric anti-self-dual 4-manifolds via complex geometry, Math. Ann., 336 (2006), 281-309. Zbl1114.53044MR2244374DOI10.1007/s00208-006-0003-0
- EELLS, J. - SALAMON, S., Twistorial constructions of harmonic maps of surfaces into four-manifolds, Ann. Sc. Norm. Sup. Pisa, 12 (1985), 589-640. Zbl0627.58019MR848842
- EVANS, L. C. - GARIEPY, R. F., Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL (1992). Zbl0804.28001MR1158660
- FUJIKI, A. - PONTECORVO, M., On Hermitian geometry of complex surfaces. In Complex, contact and symmetric manifolds, Progr. Math.234 (Birkhäuser, Boston, 2005), 153-163. Zbl1085.53065MR2105147DOI10.1007/0-8176-4424-5_11
- GRASSBERGER, P., On the Hausdorff Dimension of Fractal Attractors, J. Stat. Phys, 26 (1981), 173-179. MR643707DOI10.1007/BF01106792
- GRAY, A. - ABBENA, E. - SALAMON, S., Modern Differential Geometry of Curves and Surfaces, with Mathematica, CRC Press, Taylor and Francis (2006). Zbl1123.53001MR2253203
- GUALTIERI, M., Generalized complex geometry. arXiv:math/0703298. Zbl1235.32020MR2811595DOI10.4007/annals.2011.174.1.3
- HILBORN, R., Chaos and Nonlinear Dynamics. An Introduction for Scientists and Engineers, Oxford University Press (New York, 1994). MR1263025
- HITCHIN, N., Bihermitian metrics on Del Pezzo surfaces, J. Symplectic Geom., 5, 1 (2007), 1-8. Zbl1187.32017MR2371181
- JOYCE, D., The hypercomplex quotient and the quaternionic quotient, Math. Ann., 290 (1991), 323-340. Zbl0723.53043MR1109637DOI10.1007/BF01459248
- KOBAK, P., Explicit doubly-Hermitian metrics, Differential Geom. Appl., 10 (1999), 179-185. Zbl0947.53011MR1669453DOI10.1016/S0926-2245(99)00010-8
- LEBRUN, C. - POON, Y. S., Self-dual manifolds with symmetry. In Differential geometry: geometry in mathematical physics and related topics (Los Angeles, CA, 1990), Proc. Sympos. Pure Math.54, Amer. Math. Soc. (Providence, RI, 1993), 365-377. Zbl0790.53037MR1216553
- LEBRUN, C. R., Explicit self-dual metrics on , J. Differ. Geom., 34 (1991), 223-253. Zbl0725.53067MR1114461
- MILNOR, J., On the concept of attractor, Commun. Math. Phys., 99 (1985), 177-195. Zbl0595.58028MR790735
- MUMFORD, D., Algebraic Geometry. I, Classics in Mathematics (Springer-Verlag, Berlin, 1995). Complex projective varieties. MR1344216
- NEWLANDER, A. - NIRENBERG, L., Complex analytic coordinates in almost complex manifolds, Ann. of Math.65 (2) (1957), 391-404. Zbl0079.16102MR88770DOI10.2307/1970051
- O'BRIAN, N. R. - RAWNSLEY, J. R., Twistor spaces, Ann. Global Anal. Geom., 3 (1985), 29-58. MR812312DOI10.1007/BF00054490
- PONTECORVO, M., Uniformization of conformally flat Hermitian surfaces, Differential Geom. Appl., 2, 3 (1992), 295-305. Zbl0766.53052MR1245329DOI10.1016/0926-2245(92)90016-G
- POON, Y. S., Compact self-dual manifolds with positive scalar curvature, J. Differ. Geom., 24 (1986), 97-132. Zbl0583.53054MR857378
- SALAMON, S. - VIACLOVSKY, J., Orthogonal complex structures on domains of , to appear in Math. Ann. Zbl1167.32017MR2471604DOI10.1007/s00208-008-0293-5
- SALAMON, S. M., Orthogonal complex structures. In Differential geometry and applications (Brno, 1995) (Masaryk Univ., Brno, 1996), 103-117. Zbl0864.53051MR1406329
- SALAMON, S. M., Hermitian geometry. In Invitations to Geometry and Topology, Oxf. Grad. Texts Math.7, (Oxford University Press, 2002), 233-291. MR1967751
- SHIFFMAN, B., On the removal of singularities of analytic sets, Michigan Math. J., 15 (1968), 111-120. Zbl0165.40503MR224865
- SLUPINSKI, M. J., The twistor space of the conformal six sphere and vector bundles on quadrics, J. Geom. Phys., 19 (1996), 246-266. Zbl0856.32020MR1397410DOI10.1016/0393-0440(95)00036-4
- TRICERRI, F. - VANHECKE, L., Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc., 267 (1981), 365-397. Zbl0484.53014MR626479DOI10.2307/1998660
- WOOD, J. C., Harmonic morphisms and Hermitian structures on Einstein 4-manifolds, Internat. J. Math., 3, 3 (1992), 415-439. Zbl0763.53051MR1163734DOI10.1142/S0129167X92000187
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.