Complex Structures and Conformal Geometry

Simon Salamon

Bollettino dell'Unione Matematica Italiana (2009)

  • Volume: 2, Issue: 1, page 199-224
  • ISSN: 0392-4041

Abstract

top
A characterization of certain complex structures on conformally-flat domains in real dimension 4 is carried out in the context of Hermitian geometry and twistor spaces. The presentation is motivated by some classical surface theory, whilst the problem itself leads to a refined classification of quadrics in complex projective 3-space. The main results are sandwiched between general facts in real dimension 2n and some concluding examples in real dimension 6.

How to cite

top

Salamon, Simon. "Complex Structures and Conformal Geometry." Bollettino dell'Unione Matematica Italiana 2.1 (2009): 199-224. <http://eudml.org/doc/290589>.

@article{Salamon2009,
abstract = {A characterization of certain complex structures on conformally-flat domains in real dimension 4 is carried out in the context of Hermitian geometry and twistor spaces. The presentation is motivated by some classical surface theory, whilst the problem itself leads to a refined classification of quadrics in complex projective 3-space. The main results are sandwiched between general facts in real dimension 2n and some concluding examples in real dimension 6.},
author = {Salamon, Simon},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {199-224},
publisher = {Unione Matematica Italiana},
title = {Complex Structures and Conformal Geometry},
url = {http://eudml.org/doc/290589},
volume = {2},
year = {2009},
}

TY - JOUR
AU - Salamon, Simon
TI - Complex Structures and Conformal Geometry
JO - Bollettino dell'Unione Matematica Italiana
DA - 2009/2//
PB - Unione Matematica Italiana
VL - 2
IS - 1
SP - 199
EP - 224
AB - A characterization of certain complex structures on conformally-flat domains in real dimension 4 is carried out in the context of Hermitian geometry and twistor spaces. The presentation is motivated by some classical surface theory, whilst the problem itself leads to a refined classification of quadrics in complex projective 3-space. The main results are sandwiched between general facts in real dimension 2n and some concluding examples in real dimension 6.
LA - eng
UR - http://eudml.org/doc/290589
ER -

References

top
  1. APOSTOLOV, V. - GAUDUCHON, P. - GRANTCHAROV, G., Bi-Hermitian structures on complex surfaces, Proc. London Math. Soc. (3), 79, 2 (1999), 414-428. Zbl1035.53061MR1702248DOI10.1112/S0024611599012058
  2. APOSTOLOV, V. - GRANTCHAROV, G. - IVANOV, S., Orthogonal complex structures on certain Riemannian 6-manifolds, Differ. Geom. Appl., 11 (1999), 279-296. Zbl0964.53032MR1726543DOI10.1016/S0926-2245(99)00041-8
  3. APOSTOLOV, V. - GUALTIERI, M., Generalized Kähler manifolds, commuting complex structures, and split tangent bundles, Comm. Math. Phys., 271 (2007), 561-575. Zbl1135.53018MR2287917DOI10.1007/s00220-007-0196-4
  4. ATIYAH, M. F. - HITCHIN, N. J. - SINGER, I. M., Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A, 362, 1711 (1978), 425-461. Zbl0389.53011MR506229DOI10.1098/rspa.1978.0143
  5. ATIYAH, M. F. - WARD, R. S., Instantons and algebraic geometry, Comm. Math. Phys., 55 (1977), 117-124. Zbl0362.14004MR494098
  6. BAIRD, P. - WOOD, J. C., Harmonic Morphisms between Riemannian Manifolds, volume 29 of London Mathematical Society Monographs, Oxford University Press (Oxford, 2003). Zbl1055.53049MR2044031DOI10.1093/acprof:oso/9780198503620.001.0001
  7. BÉRARD BERGERY, L. - OCHIAI, T., On some generalizations of the construction of twistor spaces. In Global Riemannian geometry (Durham, 1983) (Ellis Horwood, Chichester, 1984), 52-59. MR757205
  8. BESSE, A. L., Einstein Manifolds, Springer, Berlin, 1987. MR867684DOI10.1007/978-3-540-74311-8
  9. BISHOP, E., Conditions for the analyticity of certain sets, Michigan Math. J., 11 (1964), 289-304. Zbl0143.30302MR168801
  10. BORISOV, L. - SALAMON, S. - VIACLOVSKY, J., Orthogonal complex structures in Euclidean spaces, In preparation. 
  11. BRYANT, R. L., Submanifolds and special structures on the octonians, J. Differ. Geom., 17 (1982), 185-232. Zbl0526.53055MR664494
  12. BRYANT, R. L., Lie groups and twistor spaces, Duke Math. J., 52 (1985), 223-261. Zbl0582.58011MR791300DOI10.1215/S0012-7094-85-05213-5
  13. BURSTALL, F. E. - RAWNSLEY, J. H., Twistor Theory for Riemannian Symmetric Spaces, Lecture Notes Math.1424 (Springer-VerlagBerlin, 1990). Zbl0699.53059MR1059054DOI10.1007/BFb0095561
  14. CALABI, E., Construction and properties of some 6-dimensional almost complex manifolds, Trans. Amer. Math. Soc., 87 (1958), 407-438. Zbl0080.37601MR130698DOI10.2307/1993108
  15. CARTAN, É., The Theory of Spinors, Dover Publications Inc. (New York, 1981). With a foreword by Raymond Streater, A reprint of the 1966 English translation, Dover Books on Advanced Mathematics. Zbl0489.53010MR631850
  16. CHERN, S. S., An elementary proof of the existence of isothermal parameters on a surface, Proc. Amer. Math. Soc., 6 (1955), 771-782. Zbl0066.15402MR74856DOI10.2307/2032933
  17. DONALDSON, S. K. - FINE, J., Toric anti-self-dual 4-manifolds via complex geometry, Math. Ann., 336 (2006), 281-309. Zbl1114.53044MR2244374DOI10.1007/s00208-006-0003-0
  18. EELLS, J. - SALAMON, S., Twistorial constructions of harmonic maps of surfaces into four-manifolds, Ann. Sc. Norm. Sup. Pisa, 12 (1985), 589-640. Zbl0627.58019MR848842
  19. EVANS, L. C. - GARIEPY, R. F., Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL (1992). Zbl0804.28001MR1158660
  20. FUJIKI, A. - PONTECORVO, M., On Hermitian geometry of complex surfaces. In Complex, contact and symmetric manifolds, Progr. Math.234 (Birkhäuser, Boston, 2005), 153-163. Zbl1085.53065MR2105147DOI10.1007/0-8176-4424-5_11
  21. GRASSBERGER, P., On the Hausdorff Dimension of Fractal Attractors, J. Stat. Phys, 26 (1981), 173-179. MR643707DOI10.1007/BF01106792
  22. GRAY, A. - ABBENA, E. - SALAMON, S., Modern Differential Geometry of Curves and Surfaces, with Mathematica, CRC Press, Taylor and Francis (2006). Zbl1123.53001MR2253203
  23. GUALTIERI, M., Generalized complex geometry. arXiv:math/0703298. Zbl1235.32020MR2811595DOI10.4007/annals.2011.174.1.3
  24. HILBORN, R., Chaos and Nonlinear Dynamics. An Introduction for Scientists and Engineers, Oxford University Press (New York, 1994). MR1263025
  25. HITCHIN, N., Bihermitian metrics on Del Pezzo surfaces, J. Symplectic Geom., 5, 1 (2007), 1-8. Zbl1187.32017MR2371181
  26. JOYCE, D., The hypercomplex quotient and the quaternionic quotient, Math. Ann., 290 (1991), 323-340. Zbl0723.53043MR1109637DOI10.1007/BF01459248
  27. KOBAK, P., Explicit doubly-Hermitian metrics, Differential Geom. Appl., 10 (1999), 179-185. Zbl0947.53011MR1669453DOI10.1016/S0926-2245(99)00010-8
  28. LEBRUN, C. - POON, Y. S., Self-dual manifolds with symmetry. In Differential geometry: geometry in mathematical physics and related topics (Los Angeles, CA, 1990), Proc. Sympos. Pure Math.54, Amer. Math. Soc. (Providence, RI, 1993), 365-377. Zbl0790.53037MR1216553
  29. LEBRUN, C. R., Explicit self-dual metrics on 2 # # 2 , J. Differ. Geom., 34 (1991), 223-253. Zbl0725.53067MR1114461
  30. MILNOR, J., On the concept of attractor, Commun. Math. Phys., 99 (1985), 177-195. Zbl0595.58028MR790735
  31. MUMFORD, D., Algebraic Geometry. I, Classics in Mathematics (Springer-Verlag, Berlin, 1995). Complex projective varieties. MR1344216
  32. NEWLANDER, A. - NIRENBERG, L., Complex analytic coordinates in almost complex manifolds, Ann. of Math.65 (2) (1957), 391-404. Zbl0079.16102MR88770DOI10.2307/1970051
  33. O'BRIAN, N. R. - RAWNSLEY, J. R., Twistor spaces, Ann. Global Anal. Geom., 3 (1985), 29-58. MR812312DOI10.1007/BF00054490
  34. PONTECORVO, M., Uniformization of conformally flat Hermitian surfaces, Differential Geom. Appl., 2, 3 (1992), 295-305. Zbl0766.53052MR1245329DOI10.1016/0926-2245(92)90016-G
  35. POON, Y. S., Compact self-dual manifolds with positive scalar curvature, J. Differ. Geom., 24 (1986), 97-132. Zbl0583.53054MR857378
  36. SALAMON, S. - VIACLOVSKY, J., Orthogonal complex structures on domains of 4 , to appear in Math. Ann. Zbl1167.32017MR2471604DOI10.1007/s00208-008-0293-5
  37. SALAMON, S. M., Orthogonal complex structures. In Differential geometry and applications (Brno, 1995) (Masaryk Univ., Brno, 1996), 103-117. Zbl0864.53051MR1406329
  38. SALAMON, S. M., Hermitian geometry. In Invitations to Geometry and Topology, Oxf. Grad. Texts Math.7, (Oxford University Press, 2002), 233-291. MR1967751
  39. SHIFFMAN, B., On the removal of singularities of analytic sets, Michigan Math. J., 15 (1968), 111-120. Zbl0165.40503MR224865
  40. SLUPINSKI, M. J., The twistor space of the conformal six sphere and vector bundles on quadrics, J. Geom. Phys., 19 (1996), 246-266. Zbl0856.32020MR1397410DOI10.1016/0393-0440(95)00036-4
  41. TRICERRI, F. - VANHECKE, L., Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc., 267 (1981), 365-397. Zbl0484.53014MR626479DOI10.2307/1998660
  42. WOOD, J. C., Harmonic morphisms and Hermitian structures on Einstein 4-manifolds, Internat. J. Math., 3, 3 (1992), 415-439. Zbl0763.53051MR1163734DOI10.1142/S0129167X92000187

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.