Algebraic Surfaces and Their Moduli Spaces: Real, Differentiable and Symplectic Structures

Fabrizio Catanese

Bollettino dell'Unione Matematica Italiana (2009)

  • Volume: 2, Issue: 3, page 537-558
  • ISSN: 0392-4041

Abstract

top
The theory of algebraic surfaces, according to Federigo Enriques, revealed `riposte armonie' (hidden harmonies) who the mathematicians to undertook their investigation. Purpose of this article is to show that this holds still nowadays; and point out, while reviewing recent progress and unexpected new results, the many faceted connections of the theory, among others, with algebra (Galois group of the rational numbers), with real geometry, and with differential and symplectic topology of 4 manifolds.

How to cite

top

Catanese, Fabrizio. "Algebraic Surfaces and Their Moduli Spaces: Real, Differentiable and Symplectic Structures." Bollettino dell'Unione Matematica Italiana 2.3 (2009): 537-558. <http://eudml.org/doc/290594>.

@article{Catanese2009,
abstract = {The theory of algebraic surfaces, according to Federigo Enriques, revealed `riposte armonie' (hidden harmonies) who the mathematicians to undertook their investigation. Purpose of this article is to show that this holds still nowadays; and point out, while reviewing recent progress and unexpected new results, the many faceted connections of the theory, among others, with algebra (Galois group of the rational numbers), with real geometry, and with differential and symplectic topology of 4 manifolds.},
author = {Catanese, Fabrizio},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {537-558},
publisher = {Unione Matematica Italiana},
title = {Algebraic Surfaces and Their Moduli Spaces: Real, Differentiable and Symplectic Structures},
url = {http://eudml.org/doc/290594},
volume = {2},
year = {2009},
}

TY - JOUR
AU - Catanese, Fabrizio
TI - Algebraic Surfaces and Their Moduli Spaces: Real, Differentiable and Symplectic Structures
JO - Bollettino dell'Unione Matematica Italiana
DA - 2009/10//
PB - Unione Matematica Italiana
VL - 2
IS - 3
SP - 537
EP - 558
AB - The theory of algebraic surfaces, according to Federigo Enriques, revealed `riposte armonie' (hidden harmonies) who the mathematicians to undertook their investigation. Purpose of this article is to show that this holds still nowadays; and point out, while reviewing recent progress and unexpected new results, the many faceted connections of the theory, among others, with algebra (Galois group of the rational numbers), with real geometry, and with differential and symplectic topology of 4 manifolds.
LA - eng
UR - http://eudml.org/doc/290594
ER -

References

top
  1. AMOROS, J. - BOGOMOLOV, F. - KATZARKOV, L. - PANTEV, T., Symplectic Lefschetz fibrations with arbitrary fundamental group, With an appendix by Ivan Smith, J. Differential Geom., 54, no. 3 (2000), 489-545. Zbl1031.57021MR1823313
  2. ANDREOTTI, A. - FRANKEL, T., The second Lefschetz theorem on hyperplane sections, in `Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo, Press, Tokyo (1969), 1-20. MR271106
  3. ARTIN, E., Theorie der Zöpfe, Hamburg Univ. Math. Seminar Abhandlungen, 4-5 (1926), 47-72. MR3069440DOI10.1007/BF02950718
  4. ARTIN, E., The collected papers of Emil Artin, edited by Serge Lang and John T. Tate, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London (1965). Zbl0146.00101MR176888
  5. AUROUX, D. - KATZARKOV, L., Branched coverings of C P 2 and invariants of symplectic 4-manifolds, Inv. Math., 142 (2000), 631-673. Zbl0961.57019MR1804164DOI10.1007/PL00005795
  6. AUROUX, D., Fiber sums of genus 2 Lefschetz fibrations, Turkish J. Math.27, no. 1 (2003), 1-10. Zbl1075.53087MR1975329
  7. AUROUX, D. - DONALDSON, S. - KATZARKOV, L., Luttinger surgery along Lagrangian tori and non-isotopy for singular symplectic plane curves. Math. Ann., 326, no. 1 (2003), 185-203. Zbl1026.57020MR1981618DOI10.1007/s00208-003-0418-9
  8. AUROUX, D. - DONALDSON, S. - KATZARKOV, L. - YOTOV, M., Fundamental groups of complements of plane curves and symplectic invariants, Topology, 43, no. 6 (2004), 1285-1318. Zbl1067.53069MR2081427DOI10.1016/j.top.2004.01.006
  9. AUROUX, D. - KATZARKOV, L., A degree doubling formula for braid monodromies and Lefschetz pencils, arXiv:math/0605001, Pure Appl. Math. Q., 4, no. 2, part 1 (2008) 237-318. Zbl1153.57018MR2400878DOI10.4310/PAMQ.2008.v4.n2.a2
  10. BARTH, W. - PETERS, C. - VAN DE VEN, A., Compact complex surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer-Verlag, Berlin (1984). Zbl0718.14023
  11. BAUER, I. - CATANESE, F. - GRUNEWALD, F., Beauville surfaces without real structures. In: Geometric methods in algebra and number theory, Progr. Math., 235, Birkhäuser (2005), 1-42. Zbl1094.14508MR2159375DOI10.1007/0-8176-4417-2_1
  12. BAUER, I. - CATANESE, F. - GRUNEWALD, F., Chebycheff and Belyi polynomials, dessins d'enfants, Beauville surfaces and group theory. Mediterranean J. Math.3, no.2 (2006) 119-143. MR2241319DOI10.1007/s00009-006-0069-7
  13. BAUER, I. - CATANESE, F. - GRUNEWALD, F., The classification of surfaces with p g = q = 0 isogenous to a product of curves, math.AG/0610267, Pure Appl. Math. Q.4, no. 2, part 1 (2008), 547-586. Zbl1151.14027MR2400886DOI10.4310/PAMQ.2008.v4.n2.a10
  14. BAUER, I. - CATANESE, F. - GRUNEWALD, F., The absolute Galois group acts faithfully on the connected components of the moduli spaces of surfaces of general type? preliminary version 2007. 
  15. BIRMAN, J. S., Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo (1974). MR375281
  16. BOMBIERI, E., Canonical models of surfaces of general type, Publ. Math. I.H.E.S., 42 (1973), 173-219. MR318163
  17. BOMBIERI, E., The Mordell conjecture revisited, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 17, no. 4 (1990), 615-640. Zbl0722.14010MR1093712
  18. CATANESE, F., Moduli of surfaces of general type. in 'Algebraic geometry-open problems' (Ravello, 1982), Lecture Notes in Math., 997, Springer, Berlin-New York (1983), 90-112. MR714742
  19. CATANESE, F., On the Moduli Spaces of Surfaces of General Type, J. Differential Geom., 19 (1984), 483-515. Zbl0549.14012MR755236
  20. CATANESE, F., On a problem of Chisini, Duke Math. J., 53 (1986), 33-42. Zbl0609.14031MR835794DOI10.1215/S0012-7094-86-05302-0
  21. CATANESE, F., Automorphisms of Rational Double Points and Moduli Spaces of Surfaces of General Type, Comp. Math., 61 (1987), 81-102. Zbl0615.14021MR879190
  22. CATANESE, F., Connected Components of Moduli Spaces, J. Differential Geom., 24 (1986), 395-399. Zbl0621.14014MR868977
  23. CATANESE, F., Moduli of algebraic surfaces, Theory of moduli (Montecatini Terme, 1985), Lecture Notes in Math., 1337, Springer, Berlin (1988), 1-83. MR963062DOI10.1007/BFb0082806
  24. CATANESE, F., Moduli and classification of irregular Kähler manifolds (and algebraic varieties) with Albanese general type fibrations, Invent. math., 104 (1991), 263-289. Zbl0743.32025MR1098610DOI10.1007/BF01245076
  25. CATANESE, F., Fibred surfaces, varieties isogenous to a product and related moduli spaces, Amer. J. Math., 122, no. 1 (2000), 1-44. Zbl0983.14013MR1737256
  26. CATANESE, F., Moduli Spaces of Surfaces and Real Structures, Ann. Math. (2), 158, no. 2 (2003), 577-592. Zbl1042.14011MR2018929DOI10.4007/annals.2003.158.577
  27. CATANESE, F., Symplectic structures of algebraic surfaces and deformation, 14 pages, math.AG/0207254. 
  28. CATANESE, F. - WAJNRYB, B., Diffeomorphism of simply connected algebraic surfaces, math.AG/0405299, J. Differ. Geom., 76, No. 2 (2007), 177-213. Zbl1127.14039MR2330412DOI10.4310/jdg/1180135677
  29. CATANESE, F. - WAJNRYB, B., The 3-cuspidal quartic and braid monodromy of degree 4 coverings, Ciliberto, C. (ed.) et al., Projective varieties with unexpected properties. A volume in memory of Giuseppe Veronese. Proceedings of the international conference "Varieties with unexpected properties", Siena, Italy, June 8-13, 2004.Berlin: Walter de Gruyter (2005), 113-129. MR2202250
  30. CATANESE, F., Canonical symplectic structures and deformations of algebraic surfaces, math.AG/0608110, Comm. Contemp. Math. (2009). Zbl1183.14046MR2538209DOI10.1142/S0219199709003478
  31. CATANESE, F., Differentiable and deformation type of algebraic surfaces, real and symplectic structures. (English) Catanese, Fabrizio (ed.) et al., Symplectic 4-manifolds and algebraic surfaces. Lectures given at the C.I.M.E. summer school, Cetraro, Italy, September 2-10, 2003. Berlin: Springer; Florence: Fondazione C.I.M.E.Lecture Notes in Mathematics1938 (2008), 55-167. Zbl1145.14001MR2441412DOI10.1007/978-3-540-78279-7_2
  32. CATANESE, F. - LÖNNE, M. - WAJNRYB, B., Moduli spaces and braid monodromy types of bidouble covers of the quadric, preliminary version 2008. 
  33. CHISINI, O., Sulla identità birazionale delle funzioni algebriche di due variabili dotate di una medesima curva di diramazione, Ist. Lombardo Sci. Lett. Cl. Sci. Mat. Nat. Rend. (3), 8 (77) (1944), 339-356. MR19351
  34. CHISINI, O., Il teorema di esistenza delle trecce algebriche. I-III, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8), 17-18 (1954), 143-149; (1955), 307-311; (1955), 8-13. MR71103
  35. DEHN, M., Die Gruppe der Abbildungsklassen. (Das arithmetische Feld auf Flächen.), Acta Math., 69 (1938), 135-206. Zbl0019.25301MR1555438DOI10.1007/BF02547712
  36. DONALDSON, S. K., An Application of Gauge Theory to Four-Dimensional Topology, J. Differential Geom., 18 (1983), 279-315. Zbl0507.57010MR710056
  37. DONALDSON, S. K., Connections, cohomology and the intersection forms of 4-manifolds, J. Differential Geom., 24 (1986), 275-341. Zbl0635.57007MR868974
  38. DONALDSON, S. K., Polynomial invariants for smooth four-manifolds, Topology, 29, 3 (1990), 257-315. Zbl0715.57007MR1066174DOI10.1016/0040-9383(90)90001-Z
  39. DONALDSON, S. K., Gauge theory and four-manifold topology. [CA] Joseph, A. (ed.) et al., First European congress of mathematics (ECM), Paris, France, July 6-10, 1992. Volume I: Invited lectures (Part 1). Basel: Birkhäuser, Prog. Math., 119 (1994), 121-151. Zbl0855.57002MR1341822
  40. DONALDSON, S. K., The Seiberg-Witten Equations and 4-manifold topology. Bull. Am. Math. Soc. (N S), 33, 1 (1996), 45-70. Zbl0872.57023MR1339810DOI10.1090/S0273-0979-96-00625-8
  41. DONALDSON, S. K., Symplectic submanifolds and almost-complex geometry, J. Differential Geom., 44, 4 (1996), 666-705. Zbl0883.53032MR1438190
  42. DONALDSON, S. K., Lefschetz pencils on symplectic manifolds, J. Differential Geom., 53, no. 2 (1999), 205-236. Zbl1040.53094MR1802722
  43. DONALDSON, S. K. - KRONHEIMER, P. B., The geometry of four-manifolds, Oxford Mathematical Monographs. Oxford: Clarendon Press (1990), ix-440. Zbl0820.57002MR1079726
  44. EHRESMANN, C., Sur les espaces fibrés différentiables, C.R. Acad. Sci. Paris, 224 (1947), 1611-1612. Zbl0029.42001MR20774
  45. ENRIQUES, F., Le Superficie Algebriche, Zanichelli, Bologna (1949). MR31770
  46. FALTINGS, G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math., 73, no. 3 (1983), 349-366. MR718935DOI10.1007/BF01388432
  47. FALTINGS, G., Finiteness theorems for abelian varieties over number fields', Invent. Math., 75, no. 2 (1984), 381. Zbl0602.14044MR732554DOI10.1007/BF01388572
  48. FREEDMAN, M., The topology of four-dimensional manifolds, J. Differential Geom., 17, n. 3 (1982), 357-454. Zbl0528.57011MR679066
  49. FREEDMAN, M. - QUINN, F., Topology of 4-manifolds, Princeton Math. Series, 39 (1990). Zbl0705.57001MR1201584
  50. FRIEDMAN, R. - MOISHEZON, B. G. - MORGAN, J. W., On the C invariance of the canonical classes of certain algebraic surfaces, Bull. Amer. Math. Soc., 17 (1987), 283-286. Zbl0627.57014MR903733DOI10.1090/S0273-0979-1987-15561-3
  51. FRIEDMAN, R. - MORGAN, J. W., Algebraic surfaces and four-manifolds: some conjectures and speculations, Bull. Amer. Math. Soc., 18 (1988) 1-19. Zbl0662.57016MR919651DOI10.1090/S0273-0979-1988-15576-0
  52. FRIEDMAN, R. - MORGAN, J. W., Smooth four-manifolds and complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 27, Springer-Verlag, Berlin, (1994), x+520. Zbl0817.14017MR1288304DOI10.1007/978-3-662-03028-8
  53. FRIEDMAN, R. - MORGAN, J. W., Algebraic surfaces and Seiberg-Witten invariants, J. Algebr. Geom., 6, No. 3 (1997) 445-479. Zbl0896.14015MR1487223
  54. GIESEKER, D., Global moduli for surfaces of general type, Invent. Math., 43, no. 3 (1977), 233-282. Zbl0389.14006MR498596DOI10.1007/BF01390081
  55. GOMPF, R. E., A new construction of symplectic manifolds, Ann. of Math., 142, 3 (1995), 527-595. Zbl0849.53027MR1356781DOI10.2307/2118554
  56. GOMPF, R. E., The topology of symplectic manifolds, Turkish J. Math., 25, no. 1 (2001), 43-59. Zbl0989.53054MR1829078
  57. GOMPF, R. E. - STIPSICZ, A., 4-manifolds and Kirby calculus, Graduate Studies in Mathematics, 20. American Mathematical Society, Providence, RI (1999) xvi+558. MR1707327DOI10.1090/gsm/020
  58. GRAUERT, H., Über die Deformation isolierter Singularitäten analytischer Mengen, Invent. Math., 15 (1972), 171-198. Zbl0237.32011MR293127DOI10.1007/BF01404124
  59. GRAUERT, H., Der Satz von Kuranishi für kompakte komplexe Räume, Invent. Math., 25 (1974), 107-142. MR346194DOI10.1007/BF01390171
  60. GROTHENDIECK, A., Techniques de construction et théoremes d'existence en géométrie algébrique. IV, Les schemas de Hilbert, Sem. Bourbaki, Vol. 13, (1960-61), 1-28. Zbl0236.14003MR1611170
  61. HATCHER, A. - THURSTON, W., A presentation for the mapping class group of a closed orientable surface, Topology, 19, no. 3 (1980), 221-237. Zbl0447.57005MR579573DOI10.1016/0040-9383(80)90009-9
  62. HIRONAKA, H., Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109-203; ibid. 205-326. Zbl0122.38603MR199184
  63. JOST, J. - YAU, S. T., A strong rigidity theorem for a certain class of compact complex analytic surfaces, Math. Ann., 271 (1985), 143-152. Zbl0554.32021MR779612DOI10.1007/BF01455803
  64. KAS, A., On the handlebody decomposition associated to a Lefschetz fibration, Pacific J. Math., 89, no. 1 (1980), 89-104. Zbl0457.14011MR596919
  65. Open problems: Classification of algebraic and analytic manifolds. Classification of algebraic and analytic manifolds, Proc. Symp. Katata/Jap. 1982. Edited by Kenji Ueno. Progress in Mathematics, 39. Birkhäuser, Boston, Mass. (1983), 591-630. MR728620
  66. KHARLAMOV, V. M. - KULIKOV, V. S., On real structures of real surfaces. Izv. Ross. Akad. Nauk Ser. Mat., 66, no. 1 (2002), 133-152; translation in Izv. Math.66, no. 1 (2002), 133-150. Zbl1055.14060MR1917540DOI10.1070/IM2002v066n01ABEH000374
  67. KHARLAMOV, V. - KULIKOV, V., Deformation inequivalent complex conjugated complex structures and applications, Turkish J. Math., 26, no. 1 (2002), 1-25. Zbl1047.14020MR1892797
  68. KODAIRA, K. - SPENCER, D. C., On deformations of complex analytic structures. I, II, Ann. of Math. (2), 67 (1958), 328-466. Zbl0128.16901MR112154DOI10.2307/1970009
  69. KODAIRA, K., On compact complex analytic surfaces, I, Ann. of Math., 71 (1960), 111-152. Zbl0098.13004MR132556DOI10.2307/1969881
  70. KODAIRA, K., On compact analytic surfaces, III, Ann. Math. (2), 78 (1963), 1-40. Zbl0171.19601MR184257
  71. KODAIRA, K., On the structure of compact complex analytic surfaces. I, Amer. J. Math., 86 (1964), 751-798. Zbl0137.17501MR187255DOI10.2307/2373157
  72. KODAIRA, K., On the structure of compact complex analytic surfaces. II, Amer. J. Math., 88 (1966), 682-721. Zbl0193.37701MR205280DOI10.2307/2373150
  73. KOLLÁR, J. - SHEPHERD BARRON, N. I., Threefolds and deformations of surface singularities, Inv. Math., 91 (1988) 299-338. Zbl0642.14008MR922803DOI10.1007/BF01389370
  74. KULIKOV, V. S., On Chisini's conjecture, Izv. Ross. Akad. Nauk Ser. Mat.63, no. 6 (1999), 83-116; translation in Izv. Math., 63, no. 6 (1999), 1139-1170. MR1748562DOI10.1070/im1999v063n06ABEH000267
  75. KULIKOV, V. S., On Chisini's conjecture. II, math. AG/0610356v1. Zbl1153.14012
  76. KURANISHI, M., On the locally complete families of complex analytic structures, Ann. Math. (2), 75 (1962), 536-577. Zbl0106.15303MR141139DOI10.2307/1970211
  77. KURANISHI, M., New proof for the existence of locally complete families of complex structures, Proc. Conf. Complex Analysis, Minneapolis, 1964 (1965), 142-154. Zbl0144.21102MR176496
  78. MANDELBAUM, R. - MOISHEZON, B., On the topological structure of non-singular algebraic surfaces in C P 3 , Topology, 15 (1976), 23-40. Zbl0323.57005MR405458DOI10.1016/0040-9383(76)90047-1
  79. MANDELBAUM, R. - MOISHEZON, B., On the topology of simply-connected algebraic surfaces, Trans. Am. Math. Soc., 260 (1980), 195-222. Zbl0465.57014MR570786DOI10.2307/1999883
  80. MANETTI, M., On some Components of the Moduli Space of Surfaces of General Type, Comp. Math., 92 (1994), 285-297. Zbl0849.14016MR1286128
  81. MANETTI, M., Degenerations of Algebraic Surfaces and Applications to Moduli Problems, Tesi di Perfezionamento Scuola Normale Pisa (1996), 1-142. 
  82. MANETTI, M., Iterated Double Covers and Connected Components of Moduli Spaces, Topology, 36, 3 (1997), 745-764. Zbl0889.14014MR1422433DOI10.1016/S0040-9383(96)00026-2
  83. MANETTI, M., On the Moduli Space of diffeomorphic algebraic surfaces, Inv. Math., 143 (2001), 29-76. Zbl1060.14520MR1802792DOI10.1007/s002220000101
  84. MILNOR, J. W., Singular points of complex hypersurfaces, Annals of Mathematics Studies61, Princeton University Press and the University of Tokyo Press (1968), 122. Zbl0184.48405MR239612
  85. MOISHEZON, B., Complex surfaces and connected sums of complex projective planes, Lecture Notes in Math., 603. Springer, Berlin (1977). Zbl0392.32015MR491730
  86. MOISHEZON, B., Stable branch curves and braid monodromies, Algebraic geometry, Proc. Conf., Chicago Circle 1980, Lect. Notes Math., 862 (1981), 107-192. MR644819
  87. MOISHEZON, B., Algebraic surfaces and the arithmetic of braids I, in Arithmetic and geometry, Pap. dedic. I. R. Shafarevich, Vol. II: Geometry' Prog. Math., 36, Birkhäuser (1983), 199-269. Zbl0592.14012MR717613
  88. MOISHEZON, B. - TEICHER, M., Finite fundamental groups, free over Z / c Z , for Galois covers of C P 2 , Math. Ann., 293, no. 4 (1992), 749-766. Zbl0739.14003MR1176029DOI10.1007/BF01444743
  89. MOISHEZON, B., The arithmetics of braids and a statement of Chisini, in 'Geometric Topology, Haifa 1992', Contemp. Math., 164, Amer. Math. Soc., Providence, RI (1994), 151-175. Zbl0837.14020MR1282761DOI10.1090/conm/164/01591
  90. MORGAN, J. W.,The Seiberg-Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes, 44. Princeton Univ. Press vi (1996). Zbl0846.57001MR1367507
  91. MOSER, J., On the volume elements on a manifold, Trans. Amer. Math. Soc., 120 (1965), 286-294. Zbl0141.19407MR182927DOI10.2307/1994022
  92. SEGRE, B., Gli automorfismi del corpo complesso, ed un problema di Corrado Segre, Atti Acc. Naz. Lincei (8), 3 (1947), 414-420. MR26987
  93. SERRE, J. P., Exemples de variétés projectives conjuguées non homéomorphes, C. R. Acad. Sci. Paris, 258 (1964), 4194-4196. Zbl0117.38003MR166197
  94. THURSTON, W. P., Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc., 55, no. 2 (1976), 467-468. Zbl0324.53031MR402764DOI10.2307/2041749
  95. WAJNRYB, B., A simple presentation for the mapping class group of an orientable surface, Israel J. Math., 45, no. 2-3 (1983), 157-174. Zbl0533.57002MR719117DOI10.1007/BF02774014
  96. WAJNRYB, B., An elementary approach to the mapping class group of a surface, Geom. Topol., 3 (1999), 405-466. Zbl0947.57015MR1726532DOI10.2140/gt.1999.3.405
  97. WALL, C. T. C., On the orthogonal groups of unimodular quadratic forms, Math. Ann., 147 (1962), 328-338. Zbl0109.03305MR138565DOI10.1007/BF01440955
  98. WITTEN, E., Monopoles and Four-Manifolds, Math. Res. Lett.,1 (1994), 809-822. MR1306021DOI10.4310/MRL.1994.v1.n6.a13
  99. YAU, S. T., Calabi's conjecture and some new results in algebraic geometry, Proc. Natl. Acad. Sci. USA, 74 (1977), 1798-1799. Zbl0355.32028MR451180DOI10.1073/pnas.74.5.1798
  100. YAU, S. T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math., 31, no. 3 (1978), 339-411. MR480350DOI10.1002/cpa.3160310304

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.