Canonical models of surfaces of general type

Enrico Bombieri

Publications Mathématiques de l'IHÉS (1973)

  • Volume: 42, page 171-219
  • ISSN: 0073-8301

How to cite

top

Bombieri, Enrico. "Canonical models of surfaces of general type." Publications Mathématiques de l'IHÉS 42 (1973): 171-219. <http://eudml.org/doc/103921>.

@article{Bombieri1973,
author = {Bombieri, Enrico},
journal = {Publications Mathématiques de l'IHÉS},
language = {eng},
pages = {171-219},
publisher = {Institut des Hautes Études Scientifiques},
title = {Canonical models of surfaces of general type},
url = {http://eudml.org/doc/103921},
volume = {42},
year = {1973},
}

TY - JOUR
AU - Bombieri, Enrico
TI - Canonical models of surfaces of general type
JO - Publications Mathématiques de l'IHÉS
PY - 1973
PB - Institut des Hautes Études Scientifiques
VL - 42
SP - 171
EP - 219
LA - eng
UR - http://eudml.org/doc/103921
ER -

References

top
  1. [1] M. ARTIN, Some numerical criteria for contractibility of curves on algebraic surfaces, Amer. J. Math., 84 (1962), 485-496. Zbl0105.14404MR26 #3704
  2. [2] M. ARTIN, On isolated rational singularities of surfaces, Amer. J. Math., 88 (1966), 129-136. Zbl0142.18602MR33 #7340
  3. [3] E. BOMBIERI, The pluricanonical map of a complex surface, Springer Lecture Notes, 155 (1970), 35-87. Zbl0213.47601MR43 #1975
  4. [4] L. CAMPEDELLI, Sopra alcuni piani doppi notevoli con curva di diramazione del decimo ordine, Atti Accad. Naz. Lincei, 15 (1932), 358-362. Zbl0004.16102
  5. [5] F. ENRIQUES, Le Superficie Algebriche, Zanichelli, Bologna, 1949. Zbl0036.37102MR11,202b
  6. [6] L. GODEAUX, Les surfaces algébriques non rationnelles de genres arithmétique et géométrique nuls, Paris, 1934. Zbl0009.22502
  7. [7] K. KODAIRA, Pluricanonical systems on algebraic surfaces of general type, J. Math. Soc. Japan, 20 (1968), 170-192. Zbl0157.27704MR37 #212
  8. [8] K. KODAIRA, Pluricanonical systems on algebraic surfaces of general type, II, to appear. Zbl0157.27704
  9. [9] S. LANG, Abelian Varieties, Interscience, New York, 1958. Zbl0098.13201
  10. [10] D. MUMFORD, The canonical ring of an algebraic surface, Annals of Math., 76 (1962), 612-615. MR25 #5065
  11. [11] D. MUMFORD, Lectures on Curves on an Algebraic Surface, Annals of Math. Studies, 59 (1966). Zbl0187.42701MR35 #187
  12. [12] D. MUMFORD, Pathologies III, Amer. J. Math., 89 (1967), 94-104. Zbl0146.42403MR36 #182
  13. [13] A. P. OGG, On pencils of curves of genus two, Topology, 5 (1966), 355-362. Zbl0145.17802MR34 #1321
  14. [14] C. P. RAMANUJAM, Remarks on the Kodaira vanishing theorem, to appear. Zbl0276.32018
  15. [15] I. R. ŠAFAREVIČ & others, Algebraic Surfaces, Moskva, 1965. 
  16. [16] T. VAN DE VEN, On the Chern numbers of certain complex and almost complex manifolds, Proc. Nat. Acad. Sci. U.S.A., 55 (1966), 1624-1627. Zbl0144.21003MR33 #6651
  17. [17] O. ZARISKI, The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface, Annals of Math., 76 (1962), 550-612. Zbl0124.37001MR25 #5065

Citations in EuDML Documents

top
  1. Michel Raynaud, Faisceaux amples et très amples
  2. Sandra Chiaruttini, Remo Gattazzo, Examples of birationality of pluricanonical maps
  3. Alexandru Buium, Degree of the fibres of an elliptic fibration
  4. Andrei N. Todorov, Surfaces of general type with p g = 1 and ( K , K ) = 1 . I
  5. Gueorgui Tomov Todorov, Pluricanonical maps for threefolds of general type
  6. Edmond E. Griffin, Families of quintic surfaces and curves
  7. F. Catanese, The moduli and the global period mapping of surfaces with K 2 = p g = 1 : a counterexample to the global Torelli problem
  8. G. Xiao, L'irrégularité des surfaces de type général dont le système canonique est composé d'un pinceau
  9. Alberto Calabri, Masaaki Murakami, Ezio Stagnaro, Examples of threefolds with Kodaira dimension 1 or 2
  10. Paolo Antonio Oliverio, On Even surfaces of general type with K 2 = 8 , p g = 4 , q = 0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.