Viscosity and Almost Everywhere Solutions of First-Order Carnot-Carathèodory Hamilton-Jacobi Equations
Bollettino dell'Unione Matematica Italiana (2010)
- Volume: 3, Issue: 2, page 391-406
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topReferences
top- BARDI, M. - CAPUZZO-DOLCETTA, I., Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser, 1997. Zbl0890.49011MR1484411DOI10.1007/978-0-8176-4755-1
- BARDI, M. - SORAVIA, P., Hamilton-Jacobi equations with a singular boundary condition on a free boundary and applications to differential games, Trans. Am. Math. Soc., 325 (1991), 205-229. Zbl0732.35013MR991958DOI10.2307/2001667
- BIESKE, T., On -harmonic functions on the Heisenberg group, Comm. in PDE, 27 (2002), 727-761. Zbl1090.35063MR1900561DOI10.1081/PDE-120002872
- BONFIGLIOLI, A. - LANCONELLI, E. - UGUZZONI, F., Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics (Springer, Berlin, 2007). Zbl1128.43001MR2363343
- CRANDALL, M. G. - ISHII, H. - LIONS, P. L., User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27, no. 1 (1992), 1-67. Zbl0755.35015MR1118699DOI10.1090/S0273-0979-1992-00266-5
- CRANDALL, M. G. - LIONS, P. L., Viscosity solutions of Hamilton Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), 1-42. Zbl0599.35024MR690039DOI10.2307/1999343
- DRAGONI, F., Limiting behavior of solutions of subelliptic heat equations, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 429-441. Zbl1152.35064MR2364902DOI10.1007/s00030-007-6013-0
- DRAGONI, F., Metric Hopf-Lax formula with semicontinuous data. Discrete Contin. Dyn. Syst., 17 (2007), 713-729. Zbl1122.35023MR2276470DOI10.3934/dcds.2007.17.713
- FRANCHI, B. - SERAPIONI, R. - SERRA CASSANO, F., Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields, Houston J. Math., 22 (1996), 859-890. Zbl0876.49014MR1437714
- FRANCHI, B. - SERAPIONI, R. - SERRA CASSANO, F., Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. B, 11 (1997), 83-117. Zbl0952.49010MR1448000
- FRANCHI, B. - HAJLASZ, P. - KOSKELA, P., Definitions of Sobolev classes on metric spaces, Ann. Inst. Fourier (Grenoble), 49 (1999), 1903-1924. Zbl0938.46037MR1738070
- GARAVELLO, M. - SORAVIA, P., Representation formulas for solutions of the HJI equations with discontinuous coefficients and existence of value in differential games, J. Optim. Theory Appl., 130 (2006), 209-229. Zbl1123.49033MR2281799DOI10.1007/s10957-006-9099-3
- GAROFALO, N. - NHIEU, D. M., Lipschitz continuity, global smooth approximations and extensions theorems for Sobolev functions in Carnot-Carathèodory spaces, J. d'Analyse Mathematique, 74 (1998), 67-97. Zbl0906.46026MR1631642DOI10.1007/BF02819446
- LIONS, P. L., Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics, 69Pitman, Boston, Mass.-London, 1982. Zbl0497.35001MR667669
- MONTI, R., Distances, boundaries and surface measures in Carnot-Carathèodory spaces, PhD Thesis Series31, Dipartimento di Matematica Università degli Studi di Trento, 2001.
- MONTI, R. - SERRA CASSANO, F., Surface measures in Carnot-Carathèodory spaces, Calc. Var. Partial Differential Equations13, no. 3 (2001), 339-376. Zbl1032.49045MR1865002DOI10.1007/s005260000076
- PANSU, P., Métriques de Carnot-Carathèodory et quasiisomtries des espaces symetriques de rang un, Ann. of Math., 129 (1989), 1-60. MR979599DOI10.2307/1971484
- SORAVIA, P., Optimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi equations. II. Equations of control problems with state constraints, Differential Integral Equations, 12, no. 2 (1999), 275-293. Zbl1007.49016MR1672758
- SORAVIA, P., Comparison with generalized cones, existence of absolute minimizers and viscosity solutions of space dependent Aronsson equations, preprint. Zbl1264.35097MR2996163DOI10.3934/mcrf.2012.2.399
- WANG, C., The Aronsson equation for absolute minimizers of L1-functionals associated with vector fields satisfying Hormander's condition, Trans. Amer. Math. Soc., 359 (2007), 91-113. Zbl1192.35038MR2247884DOI10.1090/S0002-9947-06-03897-9