Viscosity and Almost Everywhere Solutions of First-Order Carnot-Carathèodory Hamilton-Jacobi Equations
Bollettino dell'Unione Matematica Italiana (2010)
- Volume: 3, Issue: 2, page 391-406
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topSoravia, Pierpaolo. "Viscosity and Almost Everywhere Solutions of First-Order Carnot-Carathèodory Hamilton-Jacobi Equations." Bollettino dell'Unione Matematica Italiana 3.2 (2010): 391-406. <http://eudml.org/doc/290645>.
@article{Soravia2010,
abstract = {We consider viscosity and distributional derivatives of functions in the directions of a family of vector fields, generators of a Carnot-Carathèodory (C-C in brief) metric. In the framework of convex and non coercive Hamilton-Jacobi equations of C-C type we show that viscosity and a.e. subsolutions are equivalent concepts. The latter is a concept related to Lipschitz continuity with respect to the metric generated by the family of vector fields. Under more restrictive assumptions that include Carnot groups, we prove that viscosity solutions of C-C HJ equations are Lipschitz continuous with respect to the corresponding Carnot-Carathèodory metric and satisfy the equation a.e.},
author = {Soravia, Pierpaolo},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {391-406},
publisher = {Unione Matematica Italiana},
title = {Viscosity and Almost Everywhere Solutions of First-Order Carnot-Carathèodory Hamilton-Jacobi Equations},
url = {http://eudml.org/doc/290645},
volume = {3},
year = {2010},
}
TY - JOUR
AU - Soravia, Pierpaolo
TI - Viscosity and Almost Everywhere Solutions of First-Order Carnot-Carathèodory Hamilton-Jacobi Equations
JO - Bollettino dell'Unione Matematica Italiana
DA - 2010/6//
PB - Unione Matematica Italiana
VL - 3
IS - 2
SP - 391
EP - 406
AB - We consider viscosity and distributional derivatives of functions in the directions of a family of vector fields, generators of a Carnot-Carathèodory (C-C in brief) metric. In the framework of convex and non coercive Hamilton-Jacobi equations of C-C type we show that viscosity and a.e. subsolutions are equivalent concepts. The latter is a concept related to Lipschitz continuity with respect to the metric generated by the family of vector fields. Under more restrictive assumptions that include Carnot groups, we prove that viscosity solutions of C-C HJ equations are Lipschitz continuous with respect to the corresponding Carnot-Carathèodory metric and satisfy the equation a.e.
LA - eng
UR - http://eudml.org/doc/290645
ER -
References
top- BARDI, M. - CAPUZZO-DOLCETTA, I., Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser, 1997. Zbl0890.49011MR1484411DOI10.1007/978-0-8176-4755-1
- BARDI, M. - SORAVIA, P., Hamilton-Jacobi equations with a singular boundary condition on a free boundary and applications to differential games, Trans. Am. Math. Soc., 325 (1991), 205-229. Zbl0732.35013MR991958DOI10.2307/2001667
- BIESKE, T., On -harmonic functions on the Heisenberg group, Comm. in PDE, 27 (2002), 727-761. Zbl1090.35063MR1900561DOI10.1081/PDE-120002872
- BONFIGLIOLI, A. - LANCONELLI, E. - UGUZZONI, F., Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics (Springer, Berlin, 2007). Zbl1128.43001MR2363343
- CRANDALL, M. G. - ISHII, H. - LIONS, P. L., User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27, no. 1 (1992), 1-67. Zbl0755.35015MR1118699DOI10.1090/S0273-0979-1992-00266-5
- CRANDALL, M. G. - LIONS, P. L., Viscosity solutions of Hamilton Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), 1-42. Zbl0599.35024MR690039DOI10.2307/1999343
- DRAGONI, F., Limiting behavior of solutions of subelliptic heat equations, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 429-441. Zbl1152.35064MR2364902DOI10.1007/s00030-007-6013-0
- DRAGONI, F., Metric Hopf-Lax formula with semicontinuous data. Discrete Contin. Dyn. Syst., 17 (2007), 713-729. Zbl1122.35023MR2276470DOI10.3934/dcds.2007.17.713
- FRANCHI, B. - SERAPIONI, R. - SERRA CASSANO, F., Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields, Houston J. Math., 22 (1996), 859-890. Zbl0876.49014MR1437714
- FRANCHI, B. - SERAPIONI, R. - SERRA CASSANO, F., Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. B, 11 (1997), 83-117. Zbl0952.49010MR1448000
- FRANCHI, B. - HAJLASZ, P. - KOSKELA, P., Definitions of Sobolev classes on metric spaces, Ann. Inst. Fourier (Grenoble), 49 (1999), 1903-1924. Zbl0938.46037MR1738070
- GARAVELLO, M. - SORAVIA, P., Representation formulas for solutions of the HJI equations with discontinuous coefficients and existence of value in differential games, J. Optim. Theory Appl., 130 (2006), 209-229. Zbl1123.49033MR2281799DOI10.1007/s10957-006-9099-3
- GAROFALO, N. - NHIEU, D. M., Lipschitz continuity, global smooth approximations and extensions theorems for Sobolev functions in Carnot-Carathèodory spaces, J. d'Analyse Mathematique, 74 (1998), 67-97. Zbl0906.46026MR1631642DOI10.1007/BF02819446
- LIONS, P. L., Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics, 69Pitman, Boston, Mass.-London, 1982. Zbl0497.35001MR667669
- MONTI, R., Distances, boundaries and surface measures in Carnot-Carathèodory spaces, PhD Thesis Series31, Dipartimento di Matematica Università degli Studi di Trento, 2001.
- MONTI, R. - SERRA CASSANO, F., Surface measures in Carnot-Carathèodory spaces, Calc. Var. Partial Differential Equations13, no. 3 (2001), 339-376. Zbl1032.49045MR1865002DOI10.1007/s005260000076
- PANSU, P., Métriques de Carnot-Carathèodory et quasiisomtries des espaces symetriques de rang un, Ann. of Math., 129 (1989), 1-60. MR979599DOI10.2307/1971484
- SORAVIA, P., Optimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi equations. II. Equations of control problems with state constraints, Differential Integral Equations, 12, no. 2 (1999), 275-293. Zbl1007.49016MR1672758
- SORAVIA, P., Comparison with generalized cones, existence of absolute minimizers and viscosity solutions of space dependent Aronsson equations, preprint. Zbl1264.35097MR2996163DOI10.3934/mcrf.2012.2.399
- WANG, C., The Aronsson equation for absolute minimizers of L1-functionals associated with vector fields satisfying Hormander's condition, Trans. Amer. Math. Soc., 359 (2007), 91-113. Zbl1192.35038MR2247884DOI10.1090/S0002-9947-06-03897-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.