Definitions of Sobolev classes on metric spaces
Bruno Franchi; Piotr Hajłasz; Pekka Koskela
Annales de l'institut Fourier (1999)
- Volume: 49, Issue: 6, page 1903-1924
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFranchi, Bruno, Hajłasz, Piotr, and Koskela, Pekka. "Definitions of Sobolev classes on metric spaces." Annales de l'institut Fourier 49.6 (1999): 1903-1924. <http://eudml.org/doc/75406>.
@article{Franchi1999,
abstract = {There have been recent attempts to develop the theory of Sobolev spaces $W^\{1,p\}$ on metric spaces that do not admit any differentiable structure. We prove that certain definitions are equivalent. We also define the spaces in the limiting case $p=1$.},
author = {Franchi, Bruno, Hajłasz, Piotr, Koskela, Pekka},
journal = {Annales de l'institut Fourier},
keywords = {Sobolev spaces; metric spaces; doubling measures; Carnot-Carathéodory spaces; Hörmander’s rank condition; Poincaré inequality; doubling condition},
language = {eng},
number = {6},
pages = {1903-1924},
publisher = {Association des Annales de l'Institut Fourier},
title = {Definitions of Sobolev classes on metric spaces},
url = {http://eudml.org/doc/75406},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Franchi, Bruno
AU - Hajłasz, Piotr
AU - Koskela, Pekka
TI - Definitions of Sobolev classes on metric spaces
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 6
SP - 1903
EP - 1924
AB - There have been recent attempts to develop the theory of Sobolev spaces $W^{1,p}$ on metric spaces that do not admit any differentiable structure. We prove that certain definitions are equivalent. We also define the spaces in the limiting case $p=1$.
LA - eng
KW - Sobolev spaces; metric spaces; doubling measures; Carnot-Carathéodory spaces; Hörmander’s rank condition; Poincaré inequality; doubling condition
UR - http://eudml.org/doc/75406
ER -
References
top- [1] C. DELLACHERIE, P.A. MEYER, Probabilities and potential, North-Holland Mathematics Studies, 29, North-Holland Publishing Co., 1978. Zbl0494.60001MR80b:60004
- [2] E.B. FABES, C.E. KENIG, R.P. SERAPIONI, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116. Zbl0498.35042MR84i:35070
- [3] H. FEDERER, Geometric Measure Theory, Springer, 1969. Zbl0176.00801MR41 #1976
- [4] B. FRANCHI, C. GUTIÉRREZ, R.L. WHEEDEN, Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations, 19 (1994), 523-604. Zbl0822.46032MR96h:26019
- [5] B. FRANCHI, E. LANCONELLI, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 10 (1983), 523-541. Zbl0552.35032MR85k:35094
- [6] B. FRANCHI, G. LU, R.L. WHEEDEN, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields, Int. Mat. Res. Notices (1996), 1-14. Zbl0856.43006
- [7] B. FRANCHI, C. PÉREZ, R.L. WHEEDEN, Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type, J. Funct. Anal., 153 (1998), 108-146. Zbl0892.43005MR99d:42042
- [8] B. FRANCHI, R. SERAPIONI, F. SERRA CASSANO, Approximation and embedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital., (7) 11-B (1997), 83-117. Zbl0952.49010MR98c:46062
- [9] N. GAROFALO, D.M. NHIEU, Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces, J. Anal. Math., 74 (1998), 67-97. Zbl0906.46026
- [10] N. GAROFALO, D.M. NHIEU, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math., 49 (1996), 1081-1144. Zbl0880.35032MR97i:58032
- [11] P. HAJIASZ, Sobolev spaces on an arbitrary metric space, Potential Analysis, 5 (1996), 403-415. Zbl0859.46022MR97f:46050
- [12] P. HAJIASZ, Geometric approach to Sobolev spaces and badly degenerated elliptic equations, The Proceedings of Banach Center Minisemester : Nonlinear Analysis and Applications, (N.Kenmochi, M. Niezgódka, P.Strzelecki, eds.) GAKUTO International Series; Mathematical Sciences and Applications, vol. 7 (1995), 141-168. Zbl0877.46024MR97m:46051
- [13] P. HAJIASZ, P. KOSKELA, Sobolev meets Poincaré, C. R. Acad. Sci. Paris, 320 (1995), 1211-1215. Zbl0837.46024MR96f:46062
- [14] P. HAJIASZ, P. KOSKELA, Sobolev met Poincaré, Memoirs Amer. Math. Soc., to appear.
- [15] J. HEINONEN, P. KOSKELA, Weighted Sobolev and Poincaré inequalities and quasiregular mappings of polynomial type, Math. Scand., 77 (1995), 251-271. Zbl0860.30018MR97e:30039
- [16] J. HEINONEN, P. KOSKELA, Quasiconformal maps on metric spaces with controlled geometry, Acta Math., 181 (1998), 1-61. Zbl0915.30018MR99j:30025
- [17] D. JERISON, The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J., 53 (1986), 503-523. Zbl0614.35066MR87i:35027
- [18] T. KILPELÄINEN, Smooth approximation in weighted Sobolev spaces, Comment. Math. Univ. Carolinae, 38 (1997), 29-35. Zbl0886.46035MR98g:46043
- [19] P. KOSKELA, P. MACMANUS, Quasiconformal mappings and Sobolev spaces, Studia Math., 131 (1998), 1-17. Zbl0918.30011MR99e:46042
- [20] G. LU, The sharp Poincaré inequality for free vector fields : An endpoint result, Rev. Mat. Iberoamericana, 10 (1994), 453-466. Zbl0860.35006MR96g:26023
- [21] A. NAGEL, E.M. STEIN and S. WAINGER, Balls and metrics defined by vector fields I : Basic properties, Acta Math., 155 (1985), 103-147. Zbl0578.32044MR86k:46049
- [22] S. SEMMES, Finding curves on general spaces through quantitative topology with applications to Sobolev and Poincaré inequalities, Selecta Math. (N.S.), 2 (1996), 155-295. Zbl0870.54031MR97j:46033
Citations in EuDML Documents
top- Pierpaolo Soravia, Viscosity and Almost Everywhere Solutions of First-Order Carnot-Carathèodory Hamilton-Jacobi Equations
- Koskela, Pekka, Metric Sobolev spaces
- Bruno Franchi, Piotr Hajłasz, How to get rid of one of the weights in a two-weight Poincaré inequality?
- Franchi, Bruno, spaces and rectifiability for Carnot-Carathéodory metrics: an introduction
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.