Definitions of Sobolev classes on metric spaces

Bruno Franchi; Piotr Hajłasz; Pekka Koskela

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 6, page 1903-1924
  • ISSN: 0373-0956

Abstract

top
There have been recent attempts to develop the theory of Sobolev spaces W 1 , p on metric spaces that do not admit any differentiable structure. We prove that certain definitions are equivalent. We also define the spaces in the limiting case p = 1 .

How to cite

top

Franchi, Bruno, Hajłasz, Piotr, and Koskela, Pekka. "Definitions of Sobolev classes on metric spaces." Annales de l'institut Fourier 49.6 (1999): 1903-1924. <http://eudml.org/doc/75406>.

@article{Franchi1999,
abstract = {There have been recent attempts to develop the theory of Sobolev spaces $W^\{1,p\}$ on metric spaces that do not admit any differentiable structure. We prove that certain definitions are equivalent. We also define the spaces in the limiting case $p=1$.},
author = {Franchi, Bruno, Hajłasz, Piotr, Koskela, Pekka},
journal = {Annales de l'institut Fourier},
keywords = {Sobolev spaces; metric spaces; doubling measures; Carnot-Carathéodory spaces; Hörmander’s rank condition; Poincaré inequality; doubling condition},
language = {eng},
number = {6},
pages = {1903-1924},
publisher = {Association des Annales de l'Institut Fourier},
title = {Definitions of Sobolev classes on metric spaces},
url = {http://eudml.org/doc/75406},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Franchi, Bruno
AU - Hajłasz, Piotr
AU - Koskela, Pekka
TI - Definitions of Sobolev classes on metric spaces
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 6
SP - 1903
EP - 1924
AB - There have been recent attempts to develop the theory of Sobolev spaces $W^{1,p}$ on metric spaces that do not admit any differentiable structure. We prove that certain definitions are equivalent. We also define the spaces in the limiting case $p=1$.
LA - eng
KW - Sobolev spaces; metric spaces; doubling measures; Carnot-Carathéodory spaces; Hörmander’s rank condition; Poincaré inequality; doubling condition
UR - http://eudml.org/doc/75406
ER -

References

top
  1. [1] C. DELLACHERIE, P.A. MEYER, Probabilities and potential, North-Holland Mathematics Studies, 29, North-Holland Publishing Co., 1978. Zbl0494.60001MR80b:60004
  2. [2] E.B. FABES, C.E. KENIG, R.P. SERAPIONI, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116. Zbl0498.35042MR84i:35070
  3. [3] H. FEDERER, Geometric Measure Theory, Springer, 1969. Zbl0176.00801MR41 #1976
  4. [4] B. FRANCHI, C. GUTIÉRREZ, R.L. WHEEDEN, Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations, 19 (1994), 523-604. Zbl0822.46032MR96h:26019
  5. [5] B. FRANCHI, E. LANCONELLI, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 10 (1983), 523-541. Zbl0552.35032MR85k:35094
  6. [6] B. FRANCHI, G. LU, R.L. WHEEDEN, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields, Int. Mat. Res. Notices (1996), 1-14. Zbl0856.43006
  7. [7] B. FRANCHI, C. PÉREZ, R.L. WHEEDEN, Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type, J. Funct. Anal., 153 (1998), 108-146. Zbl0892.43005MR99d:42042
  8. [8] B. FRANCHI, R. SERAPIONI, F. SERRA CASSANO, Approximation and embedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital., (7) 11-B (1997), 83-117. Zbl0952.49010MR98c:46062
  9. [9] N. GAROFALO, D.M. NHIEU, Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces, J. Anal. Math., 74 (1998), 67-97. Zbl0906.46026
  10. [10] N. GAROFALO, D.M. NHIEU, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math., 49 (1996), 1081-1144. Zbl0880.35032MR97i:58032
  11. [11] P. HAJIASZ, Sobolev spaces on an arbitrary metric space, Potential Analysis, 5 (1996), 403-415. Zbl0859.46022MR97f:46050
  12. [12] P. HAJIASZ, Geometric approach to Sobolev spaces and badly degenerated elliptic equations, The Proceedings of Banach Center Minisemester : Nonlinear Analysis and Applications, (N.Kenmochi, M. Niezgódka, P.Strzelecki, eds.) GAKUTO International Series; Mathematical Sciences and Applications, vol. 7 (1995), 141-168. Zbl0877.46024MR97m:46051
  13. [13] P. HAJIASZ, P. KOSKELA, Sobolev meets Poincaré, C. R. Acad. Sci. Paris, 320 (1995), 1211-1215. Zbl0837.46024MR96f:46062
  14. [14] P. HAJIASZ, P. KOSKELA, Sobolev met Poincaré, Memoirs Amer. Math. Soc., to appear. 
  15. [15] J. HEINONEN, P. KOSKELA, Weighted Sobolev and Poincaré inequalities and quasiregular mappings of polynomial type, Math. Scand., 77 (1995), 251-271. Zbl0860.30018MR97e:30039
  16. [16] J. HEINONEN, P. KOSKELA, Quasiconformal maps on metric spaces with controlled geometry, Acta Math., 181 (1998), 1-61. Zbl0915.30018MR99j:30025
  17. [17] D. JERISON, The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J., 53 (1986), 503-523. Zbl0614.35066MR87i:35027
  18. [18] T. KILPELÄINEN, Smooth approximation in weighted Sobolev spaces, Comment. Math. Univ. Carolinae, 38 (1997), 29-35. Zbl0886.46035MR98g:46043
  19. [19] P. KOSKELA, P. MACMANUS, Quasiconformal mappings and Sobolev spaces, Studia Math., 131 (1998), 1-17. Zbl0918.30011MR99e:46042
  20. [20] G. LU, The sharp Poincaré inequality for free vector fields : An endpoint result, Rev. Mat. Iberoamericana, 10 (1994), 453-466. Zbl0860.35006MR96g:26023
  21. [21] A. NAGEL, E.M. STEIN and S. WAINGER, Balls and metrics defined by vector fields I : Basic properties, Acta Math., 155 (1985), 103-147. Zbl0578.32044MR86k:46049
  22. [22] S. SEMMES, Finding curves on general spaces through quantitative topology with applications to Sobolev and Poincaré inequalities, Selecta Math. (N.S.), 2 (1996), 155-295. Zbl0870.54031MR97j:46033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.