Representations of Numbers as Sums and Differences of Unlike Powers
Bollettino dell'Unione Matematica Italiana (2010)
- Volume: 3, Issue: 1, page 169-177
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topJabara, Enrico. "Representations of Numbers as Sums and Differences of Unlike Powers." Bollettino dell'Unione Matematica Italiana 3.1 (2010): 169-177. <http://eudml.org/doc/290668>.
@article{Jabara2010,
abstract = {In this paper we prove that every $n \in \mathbf\{Z\}$ can be written as $$n=\epsilon\_\{1\}x^\{2\}\_\{1\} + \epsilon\_\{2\}x^\{3\}\_\{2\} + \epsilon\_\{3\}x^\{4\}\_\{3\} + \epsilon\_\{4\}x^\{5\}\_\{4\}$$ and as $$n=\epsilon\_\{1\}x^\{3\}\_\{1\} + \epsilon\_\{2\}x^\{4\}\_\{2\} + \epsilon\_\{3\}x^\{5\}\_\{3\} + \epsilon\_\{4\}x^\{6\}\_\{4\} + \epsilon\_\{5\}x^\{7\}\_\{5\} + \epsilon\_\{6\}x^\{8\}\_\{6\} + \epsilon\_\{7\}x^\{9\}\_\{7\} + \epsilon\_\{8\}x^\{10\}\_\{8\}$$ with $x_\{i\} \in \mathbf\{Z\}$ and $\epsilon_\{i\} \in \\{-1,1\\}$. We also prove some other results on numbers expressible as sums or differences of unlike powers.},
author = {Jabara, Enrico},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {169-177},
publisher = {Unione Matematica Italiana},
title = {Representations of Numbers as Sums and Differences of Unlike Powers},
url = {http://eudml.org/doc/290668},
volume = {3},
year = {2010},
}
TY - JOUR
AU - Jabara, Enrico
TI - Representations of Numbers as Sums and Differences of Unlike Powers
JO - Bollettino dell'Unione Matematica Italiana
DA - 2010/2//
PB - Unione Matematica Italiana
VL - 3
IS - 1
SP - 169
EP - 177
AB - In this paper we prove that every $n \in \mathbf{Z}$ can be written as $$n=\epsilon_{1}x^{2}_{1} + \epsilon_{2}x^{3}_{2} + \epsilon_{3}x^{4}_{3} + \epsilon_{4}x^{5}_{4}$$ and as $$n=\epsilon_{1}x^{3}_{1} + \epsilon_{2}x^{4}_{2} + \epsilon_{3}x^{5}_{3} + \epsilon_{4}x^{6}_{4} + \epsilon_{5}x^{7}_{5} + \epsilon_{6}x^{8}_{6} + \epsilon_{7}x^{9}_{7} + \epsilon_{8}x^{10}_{8}$$ with $x_{i} \in \mathbf{Z}$ and $\epsilon_{i} \in \{-1,1\}$. We also prove some other results on numbers expressible as sums or differences of unlike powers.
LA - eng
UR - http://eudml.org/doc/290668
ER -
References
top- FORD, K. B., The representation of numbers as sums of unlike powers. II. J. Amer. Math. Soc., 9 , no. 4 (1996), 919-940. Zbl0866.11054MR1325794DOI10.1090/S0894-0347-96-00193-2
- FUCHS, W. H. J. - WRIGHT, E. M., The "easier" Waring problem. Q. J. Math., Oxf. Ser., 10 (1939), 190-209. Zbl0022.11501MR408DOI10.1093/qmath/os-10.1.190
- HARDY, G. H. - WRIGHT, E. M., An introduction to the theory of numbers. Fifth edition. The Clarendon Press, Oxford University Press, New York, 1979. MR568909
- JAGY, W. C. - KAPLANSKY, I., Sums of squares, cubes, and higher powers. Experiment. Math., 4 (1995), 169-173. Zbl0867.11066MR1387474
- LAPORTA, M. B. S. - WOOLEY, T. D., The representation of almost all numbers as sums of unlike powers. J. Théor. Nombres Bordeaux13 (2001), 227-240. Zbl1048.11074MR1838083
- ROTH, K. F., Proof that almost all positive integers are sums of a square, a positive cube and a fourth power. J. London Math. Soc., 24 (1949), 4-13. Zbl0032.01401MR28336DOI10.1112/jlms/s1-24.1.4
- ROTH, K. F., A problem in additive number theory. Proc. London Math. Soc., 53 , (1951), 381-395. Zbl0044.03601MR41874DOI10.1112/plms/s2-53.5.381
- VAUGHAN, R. C., The Hardy-Littlewood method. Cambridge Tracts in Mathematics, 80. Cambridge University Press, Cambridge-New York, 1981. Zbl0455.10034MR628618
- WRIGHT, E. M., An easier Waring problem. J. London Math. Soc., 9 (1934), 267-272. Zbl0010.10306MR1574875DOI10.1112/jlms/s1-9.4.267
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.