Representations of Numbers as Sums and Differences of Unlike Powers

Enrico Jabara

Bollettino dell'Unione Matematica Italiana (2010)

  • Volume: 3, Issue: 1, page 169-177
  • ISSN: 0392-4041

Abstract

top
In this paper we prove that every n 𝐙 can be written as n = ϵ 1 x 1 2 + ϵ 2 x 2 3 + ϵ 3 x 3 4 + ϵ 4 x 4 5 and as n = ϵ 1 x 1 3 + ϵ 2 x 2 4 + ϵ 3 x 3 5 + ϵ 4 x 4 6 + ϵ 5 x 5 7 + ϵ 6 x 6 8 + ϵ 7 x 7 9 + ϵ 8 x 8 10 with x i 𝐙 and ϵ i { - 1 , 1 } . We also prove some other results on numbers expressible as sums or differences of unlike powers.

How to cite

top

Jabara, Enrico. "Representations of Numbers as Sums and Differences of Unlike Powers." Bollettino dell'Unione Matematica Italiana 3.1 (2010): 169-177. <http://eudml.org/doc/290668>.

@article{Jabara2010,
abstract = {In this paper we prove that every $n \in \mathbf\{Z\}$ can be written as $$n=\epsilon\_\{1\}x^\{2\}\_\{1\} + \epsilon\_\{2\}x^\{3\}\_\{2\} + \epsilon\_\{3\}x^\{4\}\_\{3\} + \epsilon\_\{4\}x^\{5\}\_\{4\}$$ and as $$n=\epsilon\_\{1\}x^\{3\}\_\{1\} + \epsilon\_\{2\}x^\{4\}\_\{2\} + \epsilon\_\{3\}x^\{5\}\_\{3\} + \epsilon\_\{4\}x^\{6\}\_\{4\} + \epsilon\_\{5\}x^\{7\}\_\{5\} + \epsilon\_\{6\}x^\{8\}\_\{6\} + \epsilon\_\{7\}x^\{9\}\_\{7\} + \epsilon\_\{8\}x^\{10\}\_\{8\}$$ with $x_\{i\} \in \mathbf\{Z\}$ and $\epsilon_\{i\} \in \\{-1,1\\}$. We also prove some other results on numbers expressible as sums or differences of unlike powers.},
author = {Jabara, Enrico},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {169-177},
publisher = {Unione Matematica Italiana},
title = {Representations of Numbers as Sums and Differences of Unlike Powers},
url = {http://eudml.org/doc/290668},
volume = {3},
year = {2010},
}

TY - JOUR
AU - Jabara, Enrico
TI - Representations of Numbers as Sums and Differences of Unlike Powers
JO - Bollettino dell'Unione Matematica Italiana
DA - 2010/2//
PB - Unione Matematica Italiana
VL - 3
IS - 1
SP - 169
EP - 177
AB - In this paper we prove that every $n \in \mathbf{Z}$ can be written as $$n=\epsilon_{1}x^{2}_{1} + \epsilon_{2}x^{3}_{2} + \epsilon_{3}x^{4}_{3} + \epsilon_{4}x^{5}_{4}$$ and as $$n=\epsilon_{1}x^{3}_{1} + \epsilon_{2}x^{4}_{2} + \epsilon_{3}x^{5}_{3} + \epsilon_{4}x^{6}_{4} + \epsilon_{5}x^{7}_{5} + \epsilon_{6}x^{8}_{6} + \epsilon_{7}x^{9}_{7} + \epsilon_{8}x^{10}_{8}$$ with $x_{i} \in \mathbf{Z}$ and $\epsilon_{i} \in \{-1,1\}$. We also prove some other results on numbers expressible as sums or differences of unlike powers.
LA - eng
UR - http://eudml.org/doc/290668
ER -

References

top
  1. FORD, K. B., The representation of numbers as sums of unlike powers. II. J. Amer. Math. Soc., 9 , no. 4 (1996), 919-940. Zbl0866.11054MR1325794DOI10.1090/S0894-0347-96-00193-2
  2. FUCHS, W. H. J. - WRIGHT, E. M., The "easier" Waring problem. Q. J. Math., Oxf. Ser., 10 (1939), 190-209. Zbl0022.11501MR408DOI10.1093/qmath/os-10.1.190
  3. HARDY, G. H. - WRIGHT, E. M., An introduction to the theory of numbers. Fifth edition. The Clarendon Press, Oxford University Press, New York, 1979. MR568909
  4. JAGY, W. C. - KAPLANSKY, I., Sums of squares, cubes, and higher powers. Experiment. Math., 4 (1995), 169-173. Zbl0867.11066MR1387474
  5. LAPORTA, M. B. S. - WOOLEY, T. D., The representation of almost all numbers as sums of unlike powers. J. Théor. Nombres Bordeaux13 (2001), 227-240. Zbl1048.11074MR1838083
  6. ROTH, K. F., Proof that almost all positive integers are sums of a square, a positive cube and a fourth power. J. London Math. Soc., 24 (1949), 4-13. Zbl0032.01401MR28336DOI10.1112/jlms/s1-24.1.4
  7. ROTH, K. F., A problem in additive number theory. Proc. London Math. Soc., 53 , (1951), 381-395. Zbl0044.03601MR41874DOI10.1112/plms/s2-53.5.381
  8. VAUGHAN, R. C., The Hardy-Littlewood method. Cambridge Tracts in Mathematics, 80. Cambridge University Press, Cambridge-New York, 1981. Zbl0455.10034MR628618
  9. WRIGHT, E. M., An easier Waring problem. J. London Math. Soc., 9 (1934), 267-272. Zbl0010.10306MR1574875DOI10.1112/jlms/s1-9.4.267

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.