The representation of almost all numbers as sums of unlike powers

M. B. S. Laporta; T. D. Wooley

Journal de théorie des nombres de Bordeaux (2001)

  • Volume: 13, Issue: 1, page 227-240
  • ISSN: 1246-7405

Abstract

top
We prove in this article that almost all large integers have a representation as the sum of a cube, a biquadrate, ..., and a tenth power.

How to cite

top

Laporta, M. B. S., and Wooley, T. D.. "The representation of almost all numbers as sums of unlike powers." Journal de théorie des nombres de Bordeaux 13.1 (2001): 227-240. <http://eudml.org/doc/248701>.

@article{Laporta2001,
abstract = {We prove in this article that almost all large integers have a representation as the sum of a cube, a biquadrate, ..., and a tenth power.},
author = {Laporta, M. B. S., Wooley, T. D.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {sums of unlike powers; Waring's problem; smooth Weyl sums},
language = {eng},
number = {1},
pages = {227-240},
publisher = {Université Bordeaux I},
title = {The representation of almost all numbers as sums of unlike powers},
url = {http://eudml.org/doc/248701},
volume = {13},
year = {2001},
}

TY - JOUR
AU - Laporta, M. B. S.
AU - Wooley, T. D.
TI - The representation of almost all numbers as sums of unlike powers
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 1
SP - 227
EP - 240
AB - We prove in this article that almost all large integers have a representation as the sum of a cube, a biquadrate, ..., and a tenth power.
LA - eng
KW - sums of unlike powers; Waring's problem; smooth Weyl sums
UR - http://eudml.org/doc/248701
ER -

References

top
  1. [1] J. Brüdern, Sums of squares and higher powers. II. J. London Math. Soc. (2) 35 (1987), 244-250. Zbl0589.10049MR881513
  2. [2] J. Brüdern, A problem in additive number theory. Math. Proc. Cambridge Philos. Soc.103 (1988), 27-33. Zbl0655.10041MR913447
  3. [3] J. Brüdern, T.D. Wooley, On Waring's problem: two cubes and seven biquadrates. Tsukuba Math. J.24 (2000), 387-417. Zbl1003.11045MR1818095
  4. [4] H. Davenport, H. Heilbronn, On Waring's problem: two cubes and one square. Proc. London Math. Soc. (2) 43 (1937), 73-104. Zbl0016.24601JFM63.0125.02
  5. [5] K.B. Ford, The representation of numbers as sums of unlike powers. J. London Math. Soc. (2) 51 (1995), 14-26. Zbl0816.11049MR1310718
  6. [6] K.B. Ford, The representation of numbers as sums of unlike powers. II. J. Amer. Math. Soc.9 (1996), 919-940. Zbl0866.11054MR1325794
  7. [7] C. Hooley, On a new approach to various problems of Waring's type. In: Recent progress in analytic number theory, vol. 1 (Durham, 1979), Academic Press, London (1981), 127-191. Zbl0463.10037MR637346
  8. [8] K.F. Roth, Proof that almost all positive integers are sums of a square, a positive cube and a fourth power. J. London Math. Soc.24 (1949), 4-13. Zbl0032.01401MR28336
  9. [9] K.F. Roth, A problem in additive number theory. Proc. London Math. Soc. (2) 53 (1951), 381-395. Zbl0044.03601MR41874
  10. [10] K. Thanigasalam, On additive number theory. Acta Arith.13 (1967/68), 237-258. Zbl0155.09002MR222044
  11. [11] K. Thanigasalam, On sums of powers and a related problem. Acta Arith.36 (1980), 125-141. Zbl0354.10016MR581911
  12. [12] K. Thanigasalam, On certain additive representations of integers. Portugal. Math.42 (1983/84), 447-465. Zbl0574.10048MR836123
  13. [13] R.C. Vaughan, On the representation of numbers as sums of powers of natural numbers. Proc. London Math. Soc. (3) 21 (1970), 160-180. Zbl0206.06103MR272734
  14. [14] R.C. Vaughan, On sums of mixed powers. J. London Math. Soc. (2) 3 (1971), 677-688. Zbl0221.10050MR294279
  15. [15] R.C. Vaughan, A ternary additive problem. Proc. London Math. Soc. (3) 41 (1980), 516-532. Zbl0446.10042MR591653
  16. [16] R.C. Vaughan, On Waring's problem for cubes. J. Reine Angew. Math.365 (1986), 122-170. Zbl0574.10046MR826156
  17. [17] R.C. Vaughan, On Waring's problem for smaller exponents. Proc. London Math. Soc. (3) 52 (1986), 445-463. Zbl0601.10035MR833645
  18. [18] R.C. Vaughan, A new iterative method in Waring's problem. Acta Math.162 (1989), 1-71. Zbl0665.10033MR981199
  19. [19] R.C. Vaughan, The Hardy-Littlewood method. Cambridge Tract No. 125, 2nd Edition, Cambridge University Press, 1997. Zbl0868.11046MR1435742
  20. [20] R.C. Vaughan, T.D. Wooley, On Waring's problem: some refinements. Proc. London Math. Soc. (3) 63 (1991), 35-68. Zbl0736.11058MR1105718
  21. [21] R.C. Vaughan, T.D. Wooley, Further improvements in Waring's problem. Acta Math.174 (1995), 147-240. Zbl0849.11075MR1351319
  22. [22] R.C. Vaughan, T.D. Wooley, Further improvements in Waring's problem, IV: higher powers. Acta Arith.94 (2000), 203-285. Zbl0972.11092MR1776896
  23. [23] T.D. Wooley, On simultaneous additive equations, II. J. Reine Angew. Math.419 (1991), 141-198. Zbl0721.11011MR1116923
  24. [24] T.D. Wooley, Large improvements in Waring's problem. Ann. of Math. (2) 135 (1992), 131-164. Zbl0754.11026MR1147960
  25. [25] T.D. Wooley, New estimates for smooth Weyl sums. J. London Math. Soc. (2) 51 (1995), 1-13. Zbl0833.11041MR1310717
  26. [26] T.D. Wooley, Breaking classical convexity in Waring's problem: sums of cubes and quasi-diagonal behaviour. Invent. Math.122 (1995), 421-451. Zbl0851.11055MR1359599

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.