Anomalous Behaviour of the Correction to the Central Limit Theorem for a Model of Random Walk in Random Media

L. Di Persio

Bollettino dell'Unione Matematica Italiana (2010)

  • Volume: 3, Issue: 1, page 179-206
  • ISSN: 0392-4041

Abstract

top
We give a result concerning the correction to the Central Limit Theorem for a Random Walk on the lattice 𝐙 2 which interacts with a random environment under a small randomness condition. Our main theorem close a gap which dates back to seminal works by Boldrighini, Minlos and Pellegrinotti, see [3], [8] and [9]. Asymptotic behaviour of the corrections to the average and the covariance matrix in dimension ν = 1 , 2 are also presented.

How to cite

top

Di Persio, L.. "Anomalous Behaviour of the Correction to the Central Limit Theorem for a Model of Random Walk in Random Media." Bollettino dell'Unione Matematica Italiana 3.1 (2010): 179-206. <http://eudml.org/doc/290669>.

@article{DiPersio2010,
abstract = {We give a result concerning the correction to the Central Limit Theorem for a Random Walk on the lattice $\mathbf\{Z\}^\{2\}$ which interacts with a random environment under a small randomness condition. Our main theorem close a gap which dates back to seminal works by Boldrighini, Minlos and Pellegrinotti, see [3], [8] and [9]. Asymptotic behaviour of the corrections to the average and the covariance matrix in dimension $\nu = 1,2$ are also presented.},
author = {Di Persio, L.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {179-206},
publisher = {Unione Matematica Italiana},
title = {Anomalous Behaviour of the Correction to the Central Limit Theorem for a Model of Random Walk in Random Media},
url = {http://eudml.org/doc/290669},
volume = {3},
year = {2010},
}

TY - JOUR
AU - Di Persio, L.
TI - Anomalous Behaviour of the Correction to the Central Limit Theorem for a Model of Random Walk in Random Media
JO - Bollettino dell'Unione Matematica Italiana
DA - 2010/2//
PB - Unione Matematica Italiana
VL - 3
IS - 1
SP - 179
EP - 206
AB - We give a result concerning the correction to the Central Limit Theorem for a Random Walk on the lattice $\mathbf{Z}^{2}$ which interacts with a random environment under a small randomness condition. Our main theorem close a gap which dates back to seminal works by Boldrighini, Minlos and Pellegrinotti, see [3], [8] and [9]. Asymptotic behaviour of the corrections to the average and the covariance matrix in dimension $\nu = 1,2$ are also presented.
LA - eng
UR - http://eudml.org/doc/290669
ER -

References

top
  1. BÉRARD, J., The almost sure central limit theorem for one-dimensional nearest-neighbour random walks in a space-time random environment, J. Appl. Probab., 41, no. 1 (2004), 83-92. Zbl1087.60027MR2036273DOI10.1239/jap/1077134669
  2. BERNABEI, M. S., Anomalous behaviour for the random corrections to the cumulants of random walks in fluctuating random media, Probab. Theory Related Fields, 119, no. 3 (2001), 410-432. Zbl0989.60043MR1821141DOI10.1007/PL00008765
  3. BERNABEI, M. S. - BOLDRIGHINI, C. - MINLOS, R. A. - PELLEGRINOTTI, A., Almost-sure central limit theorem for a model of random walk in fluctuating random environment, Markov Process. Related Fields, 4, no. 3 (1998), 381-393. Zbl0927.60059MR1670035
  4. BOLDRIGHINI, C. - COSIMI, G. - FRIGIO, S. - PELLEGRINOTTI, A., Computer simulations for some one-dimensional models of random walks in fluctuating random environment, J. Stat. Phys., 121, no. 3-4 (2005), 361-372. Zbl1149.82321MR2213461DOI10.1007/s10955-005-7012-3
  5. BOLDRIGHINI, C. - KONDRATIEV, YU. G. - MINLOS, R. A. - PELLEGRINOTTI, A. - ZHIZHINA, E. A., Random jumps in evolving random environment, Markov Process. Related Fields, 14, no. 4 (2008), 543-570. Zbl1160.60027MR2473767
  6. BOLDRIGHINI, C. - MINLOS, R. A. - NARDI, F. R. - PELLEGRINOTTI, A., Asymptotic decay of correlations for a random walk in interaction with a Markov field, Mosc. Math. J., 5, no. 3 (2005), 507-522, 742. Zbl1116.60058MR2241810
  7. BOLDRIGHINI, C. - MINLOS, R. A. - NARDI, F. R. - PELLEGRINOTTI, A., Asymptotic decay of correlations for a random walk on the lattice 𝐙 d in interaction with a Markov field, Mosc. Math. J., 8, no. 3 (2008), 419-431, 615. Zbl1155.60045MR2483218
  8. BOLDRIGHINI, C. - MINLOS, R. A. - PELLEGRINOTTI, A., Almost-sure central limit theorem for a Markov model of random walk in dynamical random environment, Probab. Theory Related Fields, 109, no. 2 (1997), 245-273. Zbl0888.60061MR1477651DOI10.1007/s004400050132
  9. BOLDRIGHINI, C. - MINLOS, R. A. - PELLEGRINOTTI, A., Central limit theorem for a random walk in dynamical environment: integral and local, Proceedings of the Third Ukrainian-Scandinavian Conference in Probability Theory and Mathematical Statistics (Kiev, 1999), vol. 5 (1999), 16-28. Zbl0994.60056MR2018394
  10. BOLDRIGHINI, C. - MINLOS, R. A. - PELLEGRINOTTI, A., Random walks in quenched i.i.d. space-time random environment are always a.s. diffusive, Probab. Theory Related Fields, 129, no. 1 (2004), 133-156. Zbl1062.60044MR2052866DOI10.1007/s00440-003-0331-x
  11. BOLDRIGHINI, C. - MINLOS, R. A. - PELLEGRINOTTI, A., Random walks in a random (fluctuating) environment, Uspekhi Mat. Nauk, 62, no. 4 (2007), 27-76. Zbl1145.60052MR2358736DOI10.1070/RM2007v062n04ABEH004428
  12. BOLDRIGHINI, C. - PELLEGRINOTTI, A., T - 1 / 4 -noise for random walks in dynamic environment on 𝐙 , Mosc. Math. J., 1, no. 3 (2001), 365-380, 470-471. Zbl1006.60100MR1877598
  13. BRÉMONT, J., On some random walks on 𝐙 in random medium, Ann. Probab., 30, no. 3 (2002), 1266-1312. MR1920108DOI10.1214/aop/1029867128
  14. BRÉMONT, J., Random walks in random medium on 𝐙 and Lyapunov spectrum, Ann. Inst. H. Poincaré Probab. Statist., 40, no. 3 (2004), 309-336. MR2060456DOI10.1016/j.anihpb.2003.10.006
  15. BRÉMONT, J., One-dimensional finite range random walk in random medium and invariant measure equation, Ann. Inst. Henri Poincaré Probab. Stat., 45, no. 1 (2009), 70-103. MR2500229DOI10.1214/07-AIHP150
  16. CHOW, Y. S. - TEICHER, H., Probability theory, third ed., Springer Texts in Statistics (Springer-Verlag, New York, 1997), Independence, interchangeability, martingales. MR1476912DOI10.1007/978-1-4612-1950-7
  17. DOLGOPYAT, D. - KELLER, G. - LIVERANI, C., Random walk in Markovian environment, Ann. Probab., 36, no. 5 (2008), 1676-1710. Zbl1192.60110MR2440920DOI10.1214/07-AOP369
  18. GĪHMAN, Ĭ. Ī. - SKOROHOD, A. V., The theory of stochastic processes. I, English ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 210 (Springer-Verlag, Berlin, 1980), Translated from the Russian by Samuel Kotz. Zbl0531.60001MR636254
  19. IBRAGIMOV, I. A. - LINNIK, YU. V., Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971, With a supplementary chapter by I. A. Ibragimov and V. V. Petrov, Translation from the Russian edited by J. F. C. Kingman. Zbl0219.60027MR322926
  20. ZEITOUNI, O., Random walks in random environments, J. Phys. A, 39, no. 40 (2006), R433-R464. Zbl1108.60085MR2261885DOI10.1088/0305-4470/39/40/R01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.