Anomalous Behaviour of the Correction to the Central Limit Theorem for a Model of Random Walk in Random Media
Bollettino dell'Unione Matematica Italiana (2010)
- Volume: 3, Issue: 1, page 179-206
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topDi Persio, L.. "Anomalous Behaviour of the Correction to the Central Limit Theorem for a Model of Random Walk in Random Media." Bollettino dell'Unione Matematica Italiana 3.1 (2010): 179-206. <http://eudml.org/doc/290669>.
@article{DiPersio2010,
abstract = {We give a result concerning the correction to the Central Limit Theorem for a Random Walk on the lattice $\mathbf\{Z\}^\{2\}$ which interacts with a random environment under a small randomness condition. Our main theorem close a gap which dates back to seminal works by Boldrighini, Minlos and Pellegrinotti, see [3], [8] and [9]. Asymptotic behaviour of the corrections to the average and the covariance matrix in dimension $\nu = 1,2$ are also presented.},
author = {Di Persio, L.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {179-206},
publisher = {Unione Matematica Italiana},
title = {Anomalous Behaviour of the Correction to the Central Limit Theorem for a Model of Random Walk in Random Media},
url = {http://eudml.org/doc/290669},
volume = {3},
year = {2010},
}
TY - JOUR
AU - Di Persio, L.
TI - Anomalous Behaviour of the Correction to the Central Limit Theorem for a Model of Random Walk in Random Media
JO - Bollettino dell'Unione Matematica Italiana
DA - 2010/2//
PB - Unione Matematica Italiana
VL - 3
IS - 1
SP - 179
EP - 206
AB - We give a result concerning the correction to the Central Limit Theorem for a Random Walk on the lattice $\mathbf{Z}^{2}$ which interacts with a random environment under a small randomness condition. Our main theorem close a gap which dates back to seminal works by Boldrighini, Minlos and Pellegrinotti, see [3], [8] and [9]. Asymptotic behaviour of the corrections to the average and the covariance matrix in dimension $\nu = 1,2$ are also presented.
LA - eng
UR - http://eudml.org/doc/290669
ER -
References
top- BÉRARD, J., The almost sure central limit theorem for one-dimensional nearest-neighbour random walks in a space-time random environment, J. Appl. Probab., 41, no. 1 (2004), 83-92. Zbl1087.60027MR2036273DOI10.1239/jap/1077134669
- BERNABEI, M. S., Anomalous behaviour for the random corrections to the cumulants of random walks in fluctuating random media, Probab. Theory Related Fields, 119, no. 3 (2001), 410-432. Zbl0989.60043MR1821141DOI10.1007/PL00008765
- BERNABEI, M. S. - BOLDRIGHINI, C. - MINLOS, R. A. - PELLEGRINOTTI, A., Almost-sure central limit theorem for a model of random walk in fluctuating random environment, Markov Process. Related Fields, 4, no. 3 (1998), 381-393. Zbl0927.60059MR1670035
- BOLDRIGHINI, C. - COSIMI, G. - FRIGIO, S. - PELLEGRINOTTI, A., Computer simulations for some one-dimensional models of random walks in fluctuating random environment, J. Stat. Phys., 121, no. 3-4 (2005), 361-372. Zbl1149.82321MR2213461DOI10.1007/s10955-005-7012-3
- BOLDRIGHINI, C. - KONDRATIEV, YU. G. - MINLOS, R. A. - PELLEGRINOTTI, A. - ZHIZHINA, E. A., Random jumps in evolving random environment, Markov Process. Related Fields, 14, no. 4 (2008), 543-570. Zbl1160.60027MR2473767
- BOLDRIGHINI, C. - MINLOS, R. A. - NARDI, F. R. - PELLEGRINOTTI, A., Asymptotic decay of correlations for a random walk in interaction with a Markov field, Mosc. Math. J., 5, no. 3 (2005), 507-522, 742. Zbl1116.60058MR2241810
- BOLDRIGHINI, C. - MINLOS, R. A. - NARDI, F. R. - PELLEGRINOTTI, A., Asymptotic decay of correlations for a random walk on the lattice in interaction with a Markov field, Mosc. Math. J., 8, no. 3 (2008), 419-431, 615. Zbl1155.60045MR2483218
- BOLDRIGHINI, C. - MINLOS, R. A. - PELLEGRINOTTI, A., Almost-sure central limit theorem for a Markov model of random walk in dynamical random environment, Probab. Theory Related Fields, 109, no. 2 (1997), 245-273. Zbl0888.60061MR1477651DOI10.1007/s004400050132
- BOLDRIGHINI, C. - MINLOS, R. A. - PELLEGRINOTTI, A., Central limit theorem for a random walk in dynamical environment: integral and local, Proceedings of the Third Ukrainian-Scandinavian Conference in Probability Theory and Mathematical Statistics (Kiev, 1999), vol. 5 (1999), 16-28. Zbl0994.60056MR2018394
- BOLDRIGHINI, C. - MINLOS, R. A. - PELLEGRINOTTI, A., Random walks in quenched i.i.d. space-time random environment are always a.s. diffusive, Probab. Theory Related Fields, 129, no. 1 (2004), 133-156. Zbl1062.60044MR2052866DOI10.1007/s00440-003-0331-x
- BOLDRIGHINI, C. - MINLOS, R. A. - PELLEGRINOTTI, A., Random walks in a random (fluctuating) environment, Uspekhi Mat. Nauk, 62, no. 4 (2007), 27-76. Zbl1145.60052MR2358736DOI10.1070/RM2007v062n04ABEH004428
- BOLDRIGHINI, C. - PELLEGRINOTTI, A., -noise for random walks in dynamic environment on , Mosc. Math. J., 1, no. 3 (2001), 365-380, 470-471. Zbl1006.60100MR1877598
- BRÉMONT, J., On some random walks on in random medium, Ann. Probab., 30, no. 3 (2002), 1266-1312. MR1920108DOI10.1214/aop/1029867128
- BRÉMONT, J., Random walks in random medium on and Lyapunov spectrum, Ann. Inst. H. Poincaré Probab. Statist., 40, no. 3 (2004), 309-336. MR2060456DOI10.1016/j.anihpb.2003.10.006
- BRÉMONT, J., One-dimensional finite range random walk in random medium and invariant measure equation, Ann. Inst. Henri Poincaré Probab. Stat., 45, no. 1 (2009), 70-103. MR2500229DOI10.1214/07-AIHP150
- CHOW, Y. S. - TEICHER, H., Probability theory, third ed., Springer Texts in Statistics (Springer-Verlag, New York, 1997), Independence, interchangeability, martingales. MR1476912DOI10.1007/978-1-4612-1950-7
- DOLGOPYAT, D. - KELLER, G. - LIVERANI, C., Random walk in Markovian environment, Ann. Probab., 36, no. 5 (2008), 1676-1710. Zbl1192.60110MR2440920DOI10.1214/07-AOP369
- GĪHMAN, Ĭ. Ī. - SKOROHOD, A. V., The theory of stochastic processes. I, English ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 210 (Springer-Verlag, Berlin, 1980), Translated from the Russian by Samuel Kotz. Zbl0531.60001MR636254
- IBRAGIMOV, I. A. - LINNIK, YU. V., Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971, With a supplementary chapter by I. A. Ibragimov and V. V. Petrov, Translation from the Russian edited by J. F. C. Kingman. Zbl0219.60027MR322926
- ZEITOUNI, O., Random walks in random environments, J. Phys. A, 39, no. 40 (2006), R433-R464. Zbl1108.60085MR2261885DOI10.1088/0305-4470/39/40/R01
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.