Classical Free Energies of a Heat Conductor with Memory and the Minimum Free Energy for its Discrete Spectrum Model
Giovambattista Amendola; Sandra Carillo; Adele Manes
Bollettino dell'Unione Matematica Italiana (2010)
- Volume: 3, Issue: 3, page 421-446
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topAmendola, Giovambattista, Carillo, Sandra, and Manes, Adele. "Classical Free Energies of a Heat Conductor with Memory and the Minimum Free Energy for its Discrete Spectrum Model." Bollettino dell'Unione Matematica Italiana 3.3 (2010): 421-446. <http://eudml.org/doc/290674>.
@article{Amendola2010,
abstract = {Free energies, originally proposed for viscoelastic solids, together with their corresponding internal dissipations, are here considered under forms adapted to the case of rigid heat conductors with memory. The results related to the minimum free energy of the discrete spectrum model are then compared with some of the classical free energies of such conductors.},
author = {Amendola, Giovambattista, Carillo, Sandra, Manes, Adele},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {421-446},
publisher = {Unione Matematica Italiana},
title = {Classical Free Energies of a Heat Conductor with Memory and the Minimum Free Energy for its Discrete Spectrum Model},
url = {http://eudml.org/doc/290674},
volume = {3},
year = {2010},
}
TY - JOUR
AU - Amendola, Giovambattista
AU - Carillo, Sandra
AU - Manes, Adele
TI - Classical Free Energies of a Heat Conductor with Memory and the Minimum Free Energy for its Discrete Spectrum Model
JO - Bollettino dell'Unione Matematica Italiana
DA - 2010/10//
PB - Unione Matematica Italiana
VL - 3
IS - 3
SP - 421
EP - 446
AB - Free energies, originally proposed for viscoelastic solids, together with their corresponding internal dissipations, are here considered under forms adapted to the case of rigid heat conductors with memory. The results related to the minimum free energy of the discrete spectrum model are then compared with some of the classical free energies of such conductors.
LA - eng
UR - http://eudml.org/doc/290674
ER -
References
top- AMENDOLA, G. - BOSELLO, C. A. - FABRIZIO, M., Maximum recoverable work and pseudofree energies for a rigid heat conductor, Nonlinear Oscillations, 10 (1) (2007), 7-25. Zbl1268.80004MR2357060DOI10.1007/s11072-007-0002-4
- AMENDOLA, G. - BOSELLO, C. A. - MANES, A., On free energies for a heat conductor with memory effects, to appear.
- AMENDOLA, G. - CARILLO, S., Thermal work and minimum free energy in a heat conductor with memory, Quart. J. of Mech. and Appl. Math., 57 (3) (2004), 429-446. Zbl1151.80301MR2088844DOI10.1093/qjmam/57.3.429
- AMENDOLA, G. - FABRIZIO, M. - GOLDEN, J. M., Free energies for a rigid heat conductor with memory, IMA J. Appl. Math. (2010). Zbl05844402MR2740035DOI10.1093/imamat/hxq012
- AMENDOLA, G. - MANES, A., Minimum free energy for a rigid heat conductor with memory and application to a discrete spectrum model, Boll. Un. Mat. Italiana, 8 (10B) (2007), 969-987. Zbl1183.80008MR2507909
- AMENDOLA, G. - MANES, A. - VETTORI, C., Maximum recoverable work for a rigid heat conductor with memory, Acta Applicandae Mathematicae, 110, issue 3 (2010), 1011-1036. Zbl1206.80004MR2639155DOI10.1007/s10440-009-9491-8
- BREUR, S. - ONAT, E. T., On the determination of free energy in linear viscoelasticity, Z. Angew. Math. Phys., 15 (1964), 184-191. Zbl0123.40802MR178645DOI10.1007/BF01602660
- CATTANEO, C., Sulla conduzione del calore, Atti Sem. Mat. Fis. Univ. Modena, 3 (1948), 83-101. MR32898
- CARILLO, S., Some remarks on materials with memory: heat conduction and viscoelasticity, J. Nonlinear Math. Phys., 12, suppl. 1 (2005), 163-178. Zbl1362.74015MR2117178DOI10.2991/jnmp.2005.12.s1.14
- DAY, W. A., Reversibility, recoverable work and free energy in linear viscoelasticity, Quart. J. Mech. and Appl. Math., 23 (1970), 1-15. Zbl0219.73040MR273881DOI10.1093/qjmam/23.4.469
- DESERI, L. - FABRIZIO, M. - GOLDEN, J. M., The concept of a minimal state in viscoelasticity: new free energies and applications to PDEs, Arch. Rational Mech. Anal., 181 (1) (2006), 43-96. Zbl1152.74323MR2221203DOI10.1007/s00205-005-0406-1
- DILL, E. D., Simple materials with fading memory, In: Continuum Physics II., Academic, Berlin, 1972.
- FABRIZIO, M. - MORRO, A., Mathematical problems in linear viscoelasticity, SIAM, Philadelphia, 1992. Zbl0753.73003MR1153021DOI10.1137/1.9781611970807
- GIORGI, C. - GENTILI, G., Thermodynamic properties and stability for the heat flux equation with linear memory, Quart. Appl. Math., LI, 2 (1993), 343-362. Zbl0780.45011MR1218373DOI10.1090/qam/1218373
- GOLDEN, J. M., Free energy in the frequency domain: the scalar case, Quart. Appl. Math., LVIII 1 (2000), 127-150. Zbl1032.74017MR1739041DOI10.1090/qam/1739041
- GRAFFI, D., Sull'espressione analitica di alcune grandezze termodinamiche nei materiali con memoria, Rend. Sem. Mat. Univ. Padova, 68 (1982), 17-29. Zbl0535.73029
- GRAFFI, D. - FABRIZIO, M., Non unicità dell'energia libera per materiali viscoelastici, Atti Accad. Naz. Lincei, 83 (1990), 209-214.
- GURTIN, M. E. - PIPKIN, A. C., A general theory of heat conduction with finite wave speeds, Arch. Rational Mech. Anal., 31 (1968), 113-126. Zbl0164.12901MR1553521DOI10.1007/BF00281373
- MUSKHELISHVILI, N. I., Singular Integral Equations, Noordhoff, Groningen, 1953. MR355494
- VOLTERRA, V., Theory of functional and of integral and integro-differential equations, Blackie Son Limited, London,1930. Zbl55.0814.01MR100765
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.