Classical Free Energies of a Heat Conductor with Memory and the Minimum Free Energy for its Discrete Spectrum Model
Giovambattista Amendola; Sandra Carillo; Adele Manes
Bollettino dell'Unione Matematica Italiana (2010)
- Volume: 3, Issue: 3, page 421-446
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topReferences
top- AMENDOLA, G. - BOSELLO, C. A. - FABRIZIO, M., Maximum recoverable work and pseudofree energies for a rigid heat conductor, Nonlinear Oscillations, 10 (1) (2007), 7-25. Zbl1268.80004MR2357060DOI10.1007/s11072-007-0002-4
- AMENDOLA, G. - BOSELLO, C. A. - MANES, A., On free energies for a heat conductor with memory effects, to appear.
- AMENDOLA, G. - CARILLO, S., Thermal work and minimum free energy in a heat conductor with memory, Quart. J. of Mech. and Appl. Math., 57 (3) (2004), 429-446. Zbl1151.80301MR2088844DOI10.1093/qjmam/57.3.429
- AMENDOLA, G. - FABRIZIO, M. - GOLDEN, J. M., Free energies for a rigid heat conductor with memory, IMA J. Appl. Math. (2010). Zbl05844402MR2740035DOI10.1093/imamat/hxq012
- AMENDOLA, G. - MANES, A., Minimum free energy for a rigid heat conductor with memory and application to a discrete spectrum model, Boll. Un. Mat. Italiana, 8 (10B) (2007), 969-987. Zbl1183.80008MR2507909
- AMENDOLA, G. - MANES, A. - VETTORI, C., Maximum recoverable work for a rigid heat conductor with memory, Acta Applicandae Mathematicae, 110, issue 3 (2010), 1011-1036. Zbl1206.80004MR2639155DOI10.1007/s10440-009-9491-8
- BREUR, S. - ONAT, E. T., On the determination of free energy in linear viscoelasticity, Z. Angew. Math. Phys., 15 (1964), 184-191. Zbl0123.40802MR178645DOI10.1007/BF01602660
- CATTANEO, C., Sulla conduzione del calore, Atti Sem. Mat. Fis. Univ. Modena, 3 (1948), 83-101. MR32898
- CARILLO, S., Some remarks on materials with memory: heat conduction and viscoelasticity, J. Nonlinear Math. Phys., 12, suppl. 1 (2005), 163-178. Zbl1362.74015MR2117178DOI10.2991/jnmp.2005.12.s1.14
- DAY, W. A., Reversibility, recoverable work and free energy in linear viscoelasticity, Quart. J. Mech. and Appl. Math., 23 (1970), 1-15. Zbl0219.73040MR273881DOI10.1093/qjmam/23.4.469
- DESERI, L. - FABRIZIO, M. - GOLDEN, J. M., The concept of a minimal state in viscoelasticity: new free energies and applications to PDEs, Arch. Rational Mech. Anal., 181 (1) (2006), 43-96. Zbl1152.74323MR2221203DOI10.1007/s00205-005-0406-1
- DILL, E. D., Simple materials with fading memory, In: Continuum Physics II., Academic, Berlin, 1972.
- FABRIZIO, M. - MORRO, A., Mathematical problems in linear viscoelasticity, SIAM, Philadelphia, 1992. Zbl0753.73003MR1153021DOI10.1137/1.9781611970807
- GIORGI, C. - GENTILI, G., Thermodynamic properties and stability for the heat flux equation with linear memory, Quart. Appl. Math., LI, 2 (1993), 343-362. Zbl0780.45011MR1218373DOI10.1090/qam/1218373
- GOLDEN, J. M., Free energy in the frequency domain: the scalar case, Quart. Appl. Math., LVIII 1 (2000), 127-150. Zbl1032.74017MR1739041DOI10.1090/qam/1739041
- GRAFFI, D., Sull'espressione analitica di alcune grandezze termodinamiche nei materiali con memoria, Rend. Sem. Mat. Univ. Padova, 68 (1982), 17-29. Zbl0535.73029
- GRAFFI, D. - FABRIZIO, M., Non unicità dell'energia libera per materiali viscoelastici, Atti Accad. Naz. Lincei, 83 (1990), 209-214.
- GURTIN, M. E. - PIPKIN, A. C., A general theory of heat conduction with finite wave speeds, Arch. Rational Mech. Anal., 31 (1968), 113-126. Zbl0164.12901MR1553521DOI10.1007/BF00281373
- MUSKHELISHVILI, N. I., Singular Integral Equations, Noordhoff, Groningen, 1953. MR355494
- VOLTERRA, V., Theory of functional and of integral and integro-differential equations, Blackie Son Limited, London,1930. Zbl55.0814.01MR100765