The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in
Bollettino dell'Unione Matematica Italiana (2010)
- Volume: 3, Issue: 3, page 471-491
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topJanczewska, Joanna. "The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $\mathbf{R}^{2}$." Bollettino dell'Unione Matematica Italiana 3.3 (2010): 471-491. <http://eudml.org/doc/290691>.
@article{Janczewska2010,
abstract = {In this work we consider a class of planar second order Hamiltonian systems: $\ddot\{q\} + \nabla V(q) = 0$, where a potential $V$ has a singularity at a point $\xi \in \mathbf\{R\}^\{2\}$: $V(q) \to -\infty$, as $q \to \xi$ and the unique global maximum $0 \in \mathbf\{R\}$ that is achieved at two distinct points $a,b \in \mathbf\{R\}^\{2\}\setminus \\{ \xi \\}$. For a class of potentials that satisfy a strong force condition introduced by W. B. Gordon [Trans. Amer. Math. Soc. 204 (1975)], via minimization of action integrals, we establish the existence of at least two solutions which wind around $\xi$ and join $\\{ a,b \\}$ to $\\{ a,b \\}$. One of them, $Q$, is a heteroclinic orbit joining $a$ to $b$. The second is either homoclinic or heteroclinic possessing a rotation number (a winding number) different from $Q$.},
author = {Janczewska, Joanna},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {471-491},
publisher = {Unione Matematica Italiana},
title = {The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $\mathbf\{R\}^\{2\}$},
url = {http://eudml.org/doc/290691},
volume = {3},
year = {2010},
}
TY - JOUR
AU - Janczewska, Joanna
TI - The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $\mathbf{R}^{2}$
JO - Bollettino dell'Unione Matematica Italiana
DA - 2010/10//
PB - Unione Matematica Italiana
VL - 3
IS - 3
SP - 471
EP - 491
AB - In this work we consider a class of planar second order Hamiltonian systems: $\ddot{q} + \nabla V(q) = 0$, where a potential $V$ has a singularity at a point $\xi \in \mathbf{R}^{2}$: $V(q) \to -\infty$, as $q \to \xi$ and the unique global maximum $0 \in \mathbf{R}$ that is achieved at two distinct points $a,b \in \mathbf{R}^{2}\setminus \{ \xi \}$. For a class of potentials that satisfy a strong force condition introduced by W. B. Gordon [Trans. Amer. Math. Soc. 204 (1975)], via minimization of action integrals, we establish the existence of at least two solutions which wind around $\xi$ and join $\{ a,b \}$ to $\{ a,b \}$. One of them, $Q$, is a heteroclinic orbit joining $a$ to $b$. The second is either homoclinic or heteroclinic possessing a rotation number (a winding number) different from $Q$.
LA - eng
UR - http://eudml.org/doc/290691
ER -
References
top- AMBROSETTI, A. - COTI ZELATI, V., Periodic solutions of singular Lagrangian systems, Progress in Nonlinear Differential Equations and their Applications, Vol. X, Birkhäuser Boston, Inc., Boston, MA (1993). Zbl0785.34032MR1267225DOI10.1007/978-1-4612-0319-3
- BERTOTTI, M. L. - JEANJEAN, L., Multiplicity of homoclinic solutions for singular second-order conservative systems, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 1169-1180. Zbl0868.34001MR1424220DOI10.1017/S0308210500023349
- BOLOTIN, S. V., Shadowing chains of collision orbits, Discrete Contin. Dyn. Syst., 14 (2006), 235-260. Zbl1093.70005MR2163532DOI10.3934/dcds.2006.14.235
- BORGES, M. J., Heteroclinic and homoclinic solutions for a singular Hamiltonian system, European J. Appl. Math., 17 (2006), 1-32. Zbl1160.37390MR2228970DOI10.1017/S0956792506006516
- CALDIROLI, P. - JEANJEAN, L., Homoclinics and heteroclinics for a class of conservative singular Hamiltonian systems, J. Differential Equations, 136 (1997), 76-114. Zbl0887.34044MR1443325DOI10.1006/jdeq.1996.3230
- CALDIROLI, P. - NOLASCO, M., Multiple homoclinic solutions for a class of autonomous singular systems in , Ann. Inst. H. PoincarÂe Anal. Non Linéaire, 15 (1998), 113-125. MR1614603DOI10.1016/S0294-1449(99)80022-5
- FELMER, P. - TANAKA, K., Hyperbolic-like solutions for singular Hamiltonian systems, NoDEA Nonlinear Differential Equations Appl., 7 (2000), 43-65. Zbl0952.37010MR1746119DOI10.1007/PL00001422
- FELMER, P. - TANAKA, K., Scattering solutions for planar singular Hamiltonian systems via minimization, Adv. Differential Equations, 5 (2000), 1519-1544. Zbl1026.37054MR1785684
- GORDON, W. B., Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 204 (1975), 113-135. Zbl0276.58005MR377983DOI10.2307/1997352
- GRECO, C., Periodic solutions of a class of singular Hamiltonian systems, Nonlinear Anal., 12 (1988), 259-269. Zbl0648.34048MR928560DOI10.1016/0362-546X(88)90112-5
- IZYDOREK, M. - JANCZEWSKA, J., Homoclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 219 (2005), 375-389. Zbl1080.37067MR2183265DOI10.1016/j.jde.2005.06.029
- IZYDOREK, M. - JANCZEWSKA, J., Heteroclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 238 (2007), 381-393. Zbl1117.37033MR2341430DOI10.1016/j.jde.2007.03.013
- RABINOWITZ, P. H., Periodic and heteroclinic orbits for a periodic Hamiltonian system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 331-346. Zbl0701.58023MR1030854
- RABINOWITZ, P. H., Homoclinics for a singular Hamiltonian system, in Geometric analysis and the calculus of variations, Int. Press, Cambridge, MA, (1996), 267-296. Zbl0936.37035MR1449412
- SERRA, E. - TERRACINI, S., Noncollision solutions to some singular minimization problems with Keplerian-like potentials, Nonlinear Anal., 22 (1994), 45-62. Zbl0813.70006MR1256169DOI10.1016/0362-546X(94)90004-3
- SERRA, E., Homoclinic orbits at infinity for second order conservative systems, NoDEA Nonlinear Differential Equations Appl., 1 (1994), 249-266. Zbl0823.34051MR1289856DOI10.1007/BF01197749
- SERRA, E., Heteroclinic orbits at infinity for two classes of Hamiltonian systems, Boll. Un. Mat. Ital. Sect. B (7), 8 (1994), 615-639. Zbl0815.34035MR1294452
- TANAKA, K., Homoclinic orbits for a singular second order Hamiltonian system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 427-438. Zbl0712.58026MR1138531DOI10.1016/S0294-1449(16)30285-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.