The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in 𝐑 2

Joanna Janczewska

Bollettino dell'Unione Matematica Italiana (2010)

  • Volume: 3, Issue: 3, page 471-491
  • ISSN: 0392-4041

Abstract

top
In this work we consider a class of planar second order Hamiltonian systems: q ¨ + V ( q ) = 0 , where a potential V has a singularity at a point ξ 𝐑 2 : V ( q ) - , as q ξ and the unique global maximum 0 𝐑 that is achieved at two distinct points a , b 𝐑 2 { ξ } . For a class of potentials that satisfy a strong force condition introduced by W. B. Gordon [Trans. Amer. Math. Soc. 204 (1975)], via minimization of action integrals, we establish the existence of at least two solutions which wind around ξ and join { a , b } to { a , b } . One of them, Q , is a heteroclinic orbit joining a to b . The second is either homoclinic or heteroclinic possessing a rotation number (a winding number) different from Q .

How to cite

top

Janczewska, Joanna. "The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $\mathbf{R}^{2}$." Bollettino dell'Unione Matematica Italiana 3.3 (2010): 471-491. <http://eudml.org/doc/290691>.

@article{Janczewska2010,
abstract = {In this work we consider a class of planar second order Hamiltonian systems: $\ddot\{q\} + \nabla V(q) = 0$, where a potential $V$ has a singularity at a point $\xi \in \mathbf\{R\}^\{2\}$: $V(q) \to -\infty$, as $q \to \xi$ and the unique global maximum $0 \in \mathbf\{R\}$ that is achieved at two distinct points $a,b \in \mathbf\{R\}^\{2\}\setminus \\{ \xi \\}$. For a class of potentials that satisfy a strong force condition introduced by W. B. Gordon [Trans. Amer. Math. Soc. 204 (1975)], via minimization of action integrals, we establish the existence of at least two solutions which wind around $\xi$ and join $\\{ a,b \\}$ to $\\{ a,b \\}$. One of them, $Q$, is a heteroclinic orbit joining $a$ to $b$. The second is either homoclinic or heteroclinic possessing a rotation number (a winding number) different from $Q$.},
author = {Janczewska, Joanna},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {471-491},
publisher = {Unione Matematica Italiana},
title = {The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $\mathbf\{R\}^\{2\}$},
url = {http://eudml.org/doc/290691},
volume = {3},
year = {2010},
}

TY - JOUR
AU - Janczewska, Joanna
TI - The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in $\mathbf{R}^{2}$
JO - Bollettino dell'Unione Matematica Italiana
DA - 2010/10//
PB - Unione Matematica Italiana
VL - 3
IS - 3
SP - 471
EP - 491
AB - In this work we consider a class of planar second order Hamiltonian systems: $\ddot{q} + \nabla V(q) = 0$, where a potential $V$ has a singularity at a point $\xi \in \mathbf{R}^{2}$: $V(q) \to -\infty$, as $q \to \xi$ and the unique global maximum $0 \in \mathbf{R}$ that is achieved at two distinct points $a,b \in \mathbf{R}^{2}\setminus \{ \xi \}$. For a class of potentials that satisfy a strong force condition introduced by W. B. Gordon [Trans. Amer. Math. Soc. 204 (1975)], via minimization of action integrals, we establish the existence of at least two solutions which wind around $\xi$ and join $\{ a,b \}$ to $\{ a,b \}$. One of them, $Q$, is a heteroclinic orbit joining $a$ to $b$. The second is either homoclinic or heteroclinic possessing a rotation number (a winding number) different from $Q$.
LA - eng
UR - http://eudml.org/doc/290691
ER -

References

top
  1. AMBROSETTI, A. - COTI ZELATI, V., Periodic solutions of singular Lagrangian systems, Progress in Nonlinear Differential Equations and their Applications, Vol. X, Birkhäuser Boston, Inc., Boston, MA (1993). Zbl0785.34032MR1267225DOI10.1007/978-1-4612-0319-3
  2. BERTOTTI, M. L. - JEANJEAN, L., Multiplicity of homoclinic solutions for singular second-order conservative systems, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 1169-1180. Zbl0868.34001MR1424220DOI10.1017/S0308210500023349
  3. BOLOTIN, S. V., Shadowing chains of collision orbits, Discrete Contin. Dyn. Syst., 14 (2006), 235-260. Zbl1093.70005MR2163532DOI10.3934/dcds.2006.14.235
  4. BORGES, M. J., Heteroclinic and homoclinic solutions for a singular Hamiltonian system, European J. Appl. Math., 17 (2006), 1-32. Zbl1160.37390MR2228970DOI10.1017/S0956792506006516
  5. CALDIROLI, P. - JEANJEAN, L., Homoclinics and heteroclinics for a class of conservative singular Hamiltonian systems, J. Differential Equations, 136 (1997), 76-114. Zbl0887.34044MR1443325DOI10.1006/jdeq.1996.3230
  6. CALDIROLI, P. - NOLASCO, M., Multiple homoclinic solutions for a class of autonomous singular systems in 𝐑 2 , Ann. Inst. H. PoincarÂe Anal. Non Linéaire, 15 (1998), 113-125. MR1614603DOI10.1016/S0294-1449(99)80022-5
  7. FELMER, P. - TANAKA, K., Hyperbolic-like solutions for singular Hamiltonian systems, NoDEA Nonlinear Differential Equations Appl., 7 (2000), 43-65. Zbl0952.37010MR1746119DOI10.1007/PL00001422
  8. FELMER, P. - TANAKA, K., Scattering solutions for planar singular Hamiltonian systems via minimization, Adv. Differential Equations, 5 (2000), 1519-1544. Zbl1026.37054MR1785684
  9. GORDON, W. B., Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 204 (1975), 113-135. Zbl0276.58005MR377983DOI10.2307/1997352
  10. GRECO, C., Periodic solutions of a class of singular Hamiltonian systems, Nonlinear Anal., 12 (1988), 259-269. Zbl0648.34048MR928560DOI10.1016/0362-546X(88)90112-5
  11. IZYDOREK, M. - JANCZEWSKA, J., Homoclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 219 (2005), 375-389. Zbl1080.37067MR2183265DOI10.1016/j.jde.2005.06.029
  12. IZYDOREK, M. - JANCZEWSKA, J., Heteroclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 238 (2007), 381-393. Zbl1117.37033MR2341430DOI10.1016/j.jde.2007.03.013
  13. RABINOWITZ, P. H., Periodic and heteroclinic orbits for a periodic Hamiltonian system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 331-346. Zbl0701.58023MR1030854
  14. RABINOWITZ, P. H., Homoclinics for a singular Hamiltonian system, in Geometric analysis and the calculus of variations, Int. Press, Cambridge, MA, (1996), 267-296. Zbl0936.37035MR1449412
  15. SERRA, E. - TERRACINI, S., Noncollision solutions to some singular minimization problems with Keplerian-like potentials, Nonlinear Anal., 22 (1994), 45-62. Zbl0813.70006MR1256169DOI10.1016/0362-546X(94)90004-3
  16. SERRA, E., Homoclinic orbits at infinity for second order conservative systems, NoDEA Nonlinear Differential Equations Appl., 1 (1994), 249-266. Zbl0823.34051MR1289856DOI10.1007/BF01197749
  17. SERRA, E., Heteroclinic orbits at infinity for two classes of Hamiltonian systems, Boll. Un. Mat. Ital. Sect. B (7), 8 (1994), 615-639. Zbl0815.34035MR1294452
  18. TANAKA, K., Homoclinic orbits for a singular second order Hamiltonian system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 427-438. Zbl0712.58026MR1138531DOI10.1016/S0294-1449(16)30285-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.