Groups with Normality Conditions for Non-Periodic Subgroups

Maria De Falco; Francesco de Giovanni; Carmela Musella

Bollettino dell'Unione Matematica Italiana (2011)

  • Volume: 4, Issue: 1, page 109-121
  • ISSN: 0392-4041

Abstract

top
The structure of (non-periodic) groups in which all non-periodic subgroups have a prescribed property is investigated. Among other choices, we consider properties generalizing normality, like subnormality, permutability and pronormality. Moreover, non-periodic groups whose proper non-periodic subgroups belong to a given group class are studied.

How to cite

top

De Falco, Maria, de Giovanni, Francesco, and Musella, Carmela. "Groups with Normality Conditions for Non-Periodic Subgroups." Bollettino dell'Unione Matematica Italiana 4.1 (2011): 109-121. <http://eudml.org/doc/290714>.

@article{DeFalco2011,
abstract = {The structure of (non-periodic) groups in which all non-periodic subgroups have a prescribed property is investigated. Among other choices, we consider properties generalizing normality, like subnormality, permutability and pronormality. Moreover, non-periodic groups whose proper non-periodic subgroups belong to a given group class are studied.},
author = {De Falco, Maria, de Giovanni, Francesco, Musella, Carmela},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {109-121},
publisher = {Unione Matematica Italiana},
title = {Groups with Normality Conditions for Non-Periodic Subgroups},
url = {http://eudml.org/doc/290714},
volume = {4},
year = {2011},
}

TY - JOUR
AU - De Falco, Maria
AU - de Giovanni, Francesco
AU - Musella, Carmela
TI - Groups with Normality Conditions for Non-Periodic Subgroups
JO - Bollettino dell'Unione Matematica Italiana
DA - 2011/2//
PB - Unione Matematica Italiana
VL - 4
IS - 1
SP - 109
EP - 121
AB - The structure of (non-periodic) groups in which all non-periodic subgroups have a prescribed property is investigated. Among other choices, we consider properties generalizing normality, like subnormality, permutability and pronormality. Moreover, non-periodic groups whose proper non-periodic subgroups belong to a given group class are studied.
LA - eng
UR - http://eudml.org/doc/290714
ER -

References

top
  1. BAER, R., Überauflösbare Gruppen, Abh. Math. Sem. Univ. Hamburg, 23 (1957), 11-28. MR103925DOI10.1007/BF02941022
  2. DE FALCO, M., Groups with many nearly normal subgroups, Boll. Un. Mat. Ital., 4B (2001), 531-540. Zbl1147.20302MR1832003
  3. DE FALCO, M. - DE GIOVANNI, F. - MUSELLA, C., Groups whose finite homomorphic images are metahamiltonian, Comm. Algebra, 37 (2009), 2468-2476. Zbl1178.20033MR2536934DOI10.1080/00927870802337168
  4. DE FALCO, M. - MUSELLA, C., Groups with many subgroups having modular subgroup lattice, Ricerche Mat., 51 (2002), 241-247. Zbl1144.20306MR2030541
  5. DOERK, K., Minimal nicht überauflösbare, endliche Gruppen, Math. Z., 91 (1966), 198-205. MR191962DOI10.1007/BF01312426
  6. DE GIOVANNI, F. - VINCENZI, G., Some topics in the theory of pronormal subgroups of groups, Quaderni Mat., 8 (2001), 175-202. Zbl1021.20019MR1949564
  7. HEINEKEN, H. - MOHAMED, I. J., A group with trivial centre satisfying the normalizer condition, J. Algebra, 10 (1968), 368-376. Zbl0167.29001MR235035DOI10.1016/0021-8693(68)90086-0
  8. KURDACHENKO, L. A. - LEVISHCHENKO, S. S. - SEMKO, N. N., Groups with almost normal infinite subgroups, Soviet Math. (izv. VUZ), 27 (1983), 73-81. Zbl0572.20024MR729965
  9. KUZENNYI, N. F. - SEMKO, N. N., Structure of solvable nonnilpotent metahamiltonian groups, Math. Notes, 34 (1983), 572-577. Zbl0545.20027MR719472
  10. KUZENNYI, N. F. - SUBBOTIN, I. Y., Groups in which all subgroups are pronormal, Ukrain. Math. J., 39 (1987), 251-254. Zbl0642.20028MR899498
  11. MOÈHRES, W., Auflösbarkeit von Gruppen, deren Untergruppen alle subnormal sind, Arch. Math. (Basel), 54 (1990), 232-235. MR1037610DOI10.1007/BF01188516
  12. MUSELLA, C., Polycyclic groups with modular finite homomorphic images, Arch. Math. (Basel), 76 (2001), 161-165. Zbl0988.20017MR1816986DOI10.1007/s000130050556
  13. NEUMANN, B. H., Groups with finite classes of conjugate subgroups, Math. Z., 63 (1955), 76-96. Zbl0064.25201MR72137DOI10.1007/BF01187925
  14. OTAL, J. - PEÑA, J. M., Minimal non-CC-groups, Comm. Algebra, 16 (1988), 1231- 1242. Zbl0644.20025MR939041DOI10.1080/00927878808823629
  15. ROBINSON, D. J. S., Groups in which normality is a transitive relation, Proc. Cambridge Philos. Soc., 60 (1964), 21-38. Zbl0123.24901MR159885
  16. ROBINSON, D. J. S., Finiteness Conditions and Generalized Soluble Groups, Springer, Berlin (1972). Zbl0243.20032MR332989
  17. ROBINSON, D. J. S., Groups whose homomorphic images have a transitive normality relation, Trans. Amer. Math. Soc., 176 (1973), 181-213. Zbl0272.20020MR323907DOI10.2307/1996203
  18. ROMALIS, G. M. - SESEKIN, N. F., Metahamiltonian groups, Ural. Gos. Univ. Mat. Zap., 5 (1966), 101-106. MR202837
  19. ROMALIS, G. M. - SESEKIN, N. F., Metahamiltonian groups II, Ural. Gos. Univ. Mat. Zap., 6 (1968), 52-58. Zbl0351.20021MR269733
  20. ROMALIS, G. M. - SESEKIN, N. F., Metahamiltonian groups III, Ural. Gos. Univ. Mat. Zap., 7 (1969/70), 195-199. Zbl0324.20036MR285610
  21. SCHMIDT, R., Subgroup Lattices of Groups, de Gruyter, Berlin (1994). MR1292462DOI10.1515/9783110868647
  22. SMITH, H., Groups with few non-nilpotent subgroups, Glasgow Math. J., 39 (1997), 141-151. Zbl0883.20018MR1460630DOI10.1017/S0017089500032031
  23. SMITH, H. - WIEGOLD, J., Locally graded groups with all subgroups normal-by-finite, J. Austral. Math. Soc. Ser. A, 60 (1996), 222-227. Zbl0855.20028MR1375587
  24. TOMKINSON, M. J., FC-groups, Pitman, Boston (1984). MR742777

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.