Groups with Normality Conditions for Non-Periodic Subgroups
Maria De Falco; Francesco de Giovanni; Carmela Musella
Bollettino dell'Unione Matematica Italiana (2011)
- Volume: 4, Issue: 1, page 109-121
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topDe Falco, Maria, de Giovanni, Francesco, and Musella, Carmela. "Groups with Normality Conditions for Non-Periodic Subgroups." Bollettino dell'Unione Matematica Italiana 4.1 (2011): 109-121. <http://eudml.org/doc/290714>.
@article{DeFalco2011,
abstract = {The structure of (non-periodic) groups in which all non-periodic subgroups have a prescribed property is investigated. Among other choices, we consider properties generalizing normality, like subnormality, permutability and pronormality. Moreover, non-periodic groups whose proper non-periodic subgroups belong to a given group class are studied.},
author = {De Falco, Maria, de Giovanni, Francesco, Musella, Carmela},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {109-121},
publisher = {Unione Matematica Italiana},
title = {Groups with Normality Conditions for Non-Periodic Subgroups},
url = {http://eudml.org/doc/290714},
volume = {4},
year = {2011},
}
TY - JOUR
AU - De Falco, Maria
AU - de Giovanni, Francesco
AU - Musella, Carmela
TI - Groups with Normality Conditions for Non-Periodic Subgroups
JO - Bollettino dell'Unione Matematica Italiana
DA - 2011/2//
PB - Unione Matematica Italiana
VL - 4
IS - 1
SP - 109
EP - 121
AB - The structure of (non-periodic) groups in which all non-periodic subgroups have a prescribed property is investigated. Among other choices, we consider properties generalizing normality, like subnormality, permutability and pronormality. Moreover, non-periodic groups whose proper non-periodic subgroups belong to a given group class are studied.
LA - eng
UR - http://eudml.org/doc/290714
ER -
References
top- BAER, R., Überauflösbare Gruppen, Abh. Math. Sem. Univ. Hamburg, 23 (1957), 11-28. MR103925DOI10.1007/BF02941022
- DE FALCO, M., Groups with many nearly normal subgroups, Boll. Un. Mat. Ital., 4B (2001), 531-540. Zbl1147.20302MR1832003
- DE FALCO, M. - DE GIOVANNI, F. - MUSELLA, C., Groups whose finite homomorphic images are metahamiltonian, Comm. Algebra, 37 (2009), 2468-2476. Zbl1178.20033MR2536934DOI10.1080/00927870802337168
- DE FALCO, M. - MUSELLA, C., Groups with many subgroups having modular subgroup lattice, Ricerche Mat., 51 (2002), 241-247. Zbl1144.20306MR2030541
- DOERK, K., Minimal nicht überauflösbare, endliche Gruppen, Math. Z., 91 (1966), 198-205. MR191962DOI10.1007/BF01312426
- DE GIOVANNI, F. - VINCENZI, G., Some topics in the theory of pronormal subgroups of groups, Quaderni Mat., 8 (2001), 175-202. Zbl1021.20019MR1949564
- HEINEKEN, H. - MOHAMED, I. J., A group with trivial centre satisfying the normalizer condition, J. Algebra, 10 (1968), 368-376. Zbl0167.29001MR235035DOI10.1016/0021-8693(68)90086-0
- KURDACHENKO, L. A. - LEVISHCHENKO, S. S. - SEMKO, N. N., Groups with almost normal infinite subgroups, Soviet Math. (izv. VUZ), 27 (1983), 73-81. Zbl0572.20024MR729965
- KUZENNYI, N. F. - SEMKO, N. N., Structure of solvable nonnilpotent metahamiltonian groups, Math. Notes, 34 (1983), 572-577. Zbl0545.20027MR719472
- KUZENNYI, N. F. - SUBBOTIN, I. Y., Groups in which all subgroups are pronormal, Ukrain. Math. J., 39 (1987), 251-254. Zbl0642.20028MR899498
- MOÈHRES, W., Auflösbarkeit von Gruppen, deren Untergruppen alle subnormal sind, Arch. Math. (Basel), 54 (1990), 232-235. MR1037610DOI10.1007/BF01188516
- MUSELLA, C., Polycyclic groups with modular finite homomorphic images, Arch. Math. (Basel), 76 (2001), 161-165. Zbl0988.20017MR1816986DOI10.1007/s000130050556
- NEUMANN, B. H., Groups with finite classes of conjugate subgroups, Math. Z., 63 (1955), 76-96. Zbl0064.25201MR72137DOI10.1007/BF01187925
- OTAL, J. - PEÑA, J. M., Minimal non-CC-groups, Comm. Algebra, 16 (1988), 1231- 1242. Zbl0644.20025MR939041DOI10.1080/00927878808823629
- ROBINSON, D. J. S., Groups in which normality is a transitive relation, Proc. Cambridge Philos. Soc., 60 (1964), 21-38. Zbl0123.24901MR159885
- ROBINSON, D. J. S., Finiteness Conditions and Generalized Soluble Groups, Springer, Berlin (1972). Zbl0243.20032MR332989
- ROBINSON, D. J. S., Groups whose homomorphic images have a transitive normality relation, Trans. Amer. Math. Soc., 176 (1973), 181-213. Zbl0272.20020MR323907DOI10.2307/1996203
- ROMALIS, G. M. - SESEKIN, N. F., Metahamiltonian groups, Ural. Gos. Univ. Mat. Zap., 5 (1966), 101-106. MR202837
- ROMALIS, G. M. - SESEKIN, N. F., Metahamiltonian groups II, Ural. Gos. Univ. Mat. Zap., 6 (1968), 52-58. Zbl0351.20021MR269733
- ROMALIS, G. M. - SESEKIN, N. F., Metahamiltonian groups III, Ural. Gos. Univ. Mat. Zap., 7 (1969/70), 195-199. Zbl0324.20036MR285610
- SCHMIDT, R., Subgroup Lattices of Groups, de Gruyter, Berlin (1994). MR1292462DOI10.1515/9783110868647
- SMITH, H., Groups with few non-nilpotent subgroups, Glasgow Math. J., 39 (1997), 141-151. Zbl0883.20018MR1460630DOI10.1017/S0017089500032031
- SMITH, H. - WIEGOLD, J., Locally graded groups with all subgroups normal-by-finite, J. Austral. Math. Soc. Ser. A, 60 (1996), 222-227. Zbl0855.20028MR1375587
- TOMKINSON, M. J., FC-groups, Pitman, Boston (1984). MR742777
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.