Endpoint and Intermediate Potential Estimates for Nonlinear Equations

Tuomo Kuusi; Giuseppe Mingione

Bollettino dell'Unione Matematica Italiana (2011)

  • Volume: 4, Issue: 1, page 149-157
  • ISSN: 0392-4041

Abstract

top
We describe a few results obtained in [10], concerning the possibility of estimating solutions of quasilinear elliptic equations via nonlinear potentials.

How to cite

top

Kuusi, Tuomo, and Mingione, Giuseppe. "Endpoint and Intermediate Potential Estimates for Nonlinear Equations." Bollettino dell'Unione Matematica Italiana 4.1 (2011): 149-157. <http://eudml.org/doc/290718>.

@article{Kuusi2011,
abstract = {We describe a few results obtained in [10], concerning the possibility of estimating solutions of quasilinear elliptic equations via nonlinear potentials.},
author = {Kuusi, Tuomo, Mingione, Giuseppe},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {149-157},
publisher = {Unione Matematica Italiana},
title = {Endpoint and Intermediate Potential Estimates for Nonlinear Equations},
url = {http://eudml.org/doc/290718},
volume = {4},
year = {2011},
}

TY - JOUR
AU - Kuusi, Tuomo
AU - Mingione, Giuseppe
TI - Endpoint and Intermediate Potential Estimates for Nonlinear Equations
JO - Bollettino dell'Unione Matematica Italiana
DA - 2011/2//
PB - Unione Matematica Italiana
VL - 4
IS - 1
SP - 149
EP - 157
AB - We describe a few results obtained in [10], concerning the possibility of estimating solutions of quasilinear elliptic equations via nonlinear potentials.
LA - eng
UR - http://eudml.org/doc/290718
ER -

References

top
  1. ADAMS, R. A. - FOURNIER, J. J. F., Sobolev Spaces. Second edition, Pure and Appl. Math., 140, Elsevier/Academic Press, Amsterdam, 2003. MR2424078
  2. BOCCARDO, L. - GALLOUËT, T., Nonlinear elliptic equations with right-hand side measures, Comm. PDE, 17 (1992), 641-655. Zbl0812.35043MR1163440DOI10.1080/03605309208820857
  3. DE VORE, R. A. - SHARPLEY, R. C., Maximal functions measuring smoothness, Mem. Amer. Math. Soc., 47, no. 293 (1984). Zbl0529.42005MR727820DOI10.1090/memo/0293
  4. DUZAAR, F. - MINGIONE, G., Gradient estimates via nonlinear potentials, Amer. J. Math., to appear. Zbl1200.35313MR2823872DOI10.1353/ajm.2011.0023
  5. DUZAAR, F. - MINGIONE, G., Gradient estimates via linear and nonlinear potentials, J. Funct. Anal., 259 (2010), 2961-2998. Zbl1200.35313MR2719282DOI10.1016/j.jfa.2010.08.006
  6. DUZAAR, F. - MINGIONE, G., Local Lipschitz regularity for degenerate elliptic systems, Ann. Inst. H. Poincaré Anal. Non Linèaire, 27 (2010), 1361-1396. Zbl1216.35063MR2738325DOI10.1016/j.anihpc.2010.07.002
  7. KILPELÄINEN, T. - MALÝ, J., The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math., 172 (1994), 137-161. MR1264000DOI10.1007/BF02392793
  8. KRISTENSEN, J. - MINGIONE, G., The singular set of minima of integral functionals, Arch. Ration. Mech. Anal., 180 (2006), 331-398. Zbl1116.49010MR2214961DOI10.1007/s00205-005-0402-5
  9. KRISTENSEN, J. - MINGIONE, G., Boundary regularity in variational problems, Arch. Rational Mech. Anal., 198 (2010), 369-455. Zbl1228.49043MR2721587DOI10.1007/s00205-010-0294-x
  10. KUUSI, T. - MINGIONE, G., Universal potential estimates, Preprint 2010. MR2900466DOI10.1016/j.jfa.2012.02.018
  11. MANFREDI, J. J., Regularity of the gradient for a class of nonlinear possibly degenerate elliptic equations, Ph. D. Thesis, University of Washington, St. Louis. 
  12. MINGIONE, G., Bounds for the singular set of solutions to non linear elliptic systems, Calc. Var. PDE, 18 (2003), 373-400. Zbl1045.35024MR2020367DOI10.1007/s00526-003-0209-x
  13. MINGIONE, G., The Calderón-Zygmund theory for elliptic problems with measure data, Ann. Scu. Norm. Sup. Pisa Cl. Sci. (V), 6 (2007), 195-261. Zbl1178.35168MR2352517
  14. MINGIONE, G., Gradient estimates below the duality exponent, Math. Ann., 346 (2010), 571-627. Zbl1193.35077MR2578563DOI10.1007/s00208-009-0411-z
  15. MINGIONE, G., Gradient potential estimates, J. European Math. Soc., 13 (2011), 459-486. Zbl1217.35077MR2746772DOI10.4171/JEMS/258
  16. MINGIONE, G., Nonlinear aspects of Calderón-Zygmund theory, Jahresbericht der DMV, 112 (2010), 159-191. Zbl1218.35104MR2722503DOI10.1365/s13291-010-0004-5
  17. TRUDINGER, N. S. - WANG, X. J., On the weak continuity of elliptic operators and applications to potential theory, Amer. J. Math., 124 (2002), 369-410. Zbl1067.35023MR1890997
  18. TRUDINGER, N. S. - WANG, X. J., Quasilinear elliptic equations with signed measure data, Disc. Cont. Dyn. Systems, 124 (2002), 369-410. MR2449089DOI10.3934/dcds.2009.23.477

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.