Some Remarks on Nonlinear Composition Operators in Spaces of Differentiable Functions

J. Appell; Z. Jesús; O. Mejía

Bollettino dell'Unione Matematica Italiana (2011)

  • Volume: 4, Issue: 3, page 321-336
  • ISSN: 0392-4041

Abstract

top
In this note we study the nonlinear composition operator f g f in various spaces of differentiable functions over an interval. It turns out that this operator is always bounded in the corresponding norm, whenever it maps such a space into itself, but continuous only in exceptional cases.

How to cite

top

Appell, J., Jesús, Z., and Mejía, O.. "Some Remarks on Nonlinear Composition Operators in Spaces of Differentiable Functions." Bollettino dell'Unione Matematica Italiana 4.3 (2011): 321-336. <http://eudml.org/doc/290727>.

@article{Appell2011,
abstract = {In this note we study the nonlinear composition operator $f \mapsto g \circ f$ in various spaces of differentiable functions over an interval. It turns out that this operator is always bounded in the corresponding norm, whenever it maps such a space into itself, but continuous only in exceptional cases.},
author = {Appell, J., Jesús, Z., Mejía, O.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {321-336},
publisher = {Unione Matematica Italiana},
title = {Some Remarks on Nonlinear Composition Operators in Spaces of Differentiable Functions},
url = {http://eudml.org/doc/290727},
volume = {4},
year = {2011},
}

TY - JOUR
AU - Appell, J.
AU - Jesús, Z.
AU - Mejía, O.
TI - Some Remarks on Nonlinear Composition Operators in Spaces of Differentiable Functions
JO - Bollettino dell'Unione Matematica Italiana
DA - 2011/10//
PB - Unione Matematica Italiana
VL - 4
IS - 3
SP - 321
EP - 336
AB - In this note we study the nonlinear composition operator $f \mapsto g \circ f$ in various spaces of differentiable functions over an interval. It turns out that this operator is always bounded in the corresponding norm, whenever it maps such a space into itself, but continuous only in exceptional cases.
LA - eng
UR - http://eudml.org/doc/290727
ER -

References

top
  1. AMBROSETTI, A. - PRODI, G., Analisi Non Lineare, Scuola Norm. Sup. Pisa, Pisa1973. 
  2. AMBROSETTI, A. - PRODI, G., A Primer of Nonlinear Analysis, Cambridge Univ. Press, Cambridge1992. Zbl0781.47046MR1225101
  3. APPELL, J. - GUANDA, N. - MERENTES, N. - SÁNCHEZ, J. L., Some boundedness and continuity properties of nonlinear composition operators: A survey, Comm. Applied Anal., to appear. Zbl1255.47059MR2867343
  4. APPELL, J. - GUANDA, N. - VÄTH, M., Function spaces with the Matkowski property and degeneracy phenomena for nonlinear composition operators, Fixed Point Theory (Cluj), to appear. MR2895691
  5. APPELL, J. - ZABREJKO, P. P., Remarks on the superposition operator problem in various functions spaces, Complex Variables Elliptic Equ., 55, 8 (2010), 727-737. Zbl1216.47089MR2674861DOI10.1080/17476930903568332
  6. BOURDAUD, G. - LANZA DE CRISTOFORIS, M. - SICKEL, W., Superposition operators and functions of bounded p-variation II, Nonlin. Anal. TMA, 62 (2005), 483-517. Zbl1090.47050MR2147980DOI10.1016/j.na.2005.03.062
  7. BOURDAUD, G. - LANZA DE CRISTOFORIS, M. - SICKEL, W., Superposition operators and functions of bounded p-variation, Rev. Mat. Iberoamer., 22, 2 (2006), 455-487. Zbl1134.46015MR2294787DOI10.4171/RMI/463
  8. GELBAUM, B. R. - OLMSTED, J. M. H., Counterexamples in Analysis, Holden-Day, San Francisco1964. Zbl0121.28902MR169961
  9. GOEBEL, M. - SACHWEH, F., On the autonomous Nemytskij operator in Hölder spaces, Zeitschr. Anal. Anw., 18, 2 (1999), 205-229. Zbl0941.47053MR1701350DOI10.4171/ZAA/878
  10. JORDAN, C., Sur la séries de Fourier, C. R. Acad. Sci. Paris, 2 (1881), 228-230. 
  11. JOSEPHY, M., Composing functions of bounded variation, Proc. Amer. Math. Soc., 83, 2 (1981), 354-356. Zbl0475.26005MR624930DOI10.2307/2043527
  12. KANNAN, R. - KRUEGER, C. K., Advanced Analysis on the Real Line, Springer, Berlin1996. Zbl0855.26001MR1390758
  13. MARCUS, M. - MIZEL, V. J., Superposition mappings which operate on Sobolev spaces, Nonlin. Anal. TMA, 2, 2 (1978), 257-258. Zbl0387.46035MR531975DOI10.2307/1998689
  14. MARCUS, M. - MIZEL, V. J., Complete characterization of functions which act, via superposition, on Sobolev spaces, Trans. Amer. Math. Soc., 251 (1979), 187-218. Zbl0417.46035MR531975DOI10.2307/1998689
  15. MATKOWSKI, J., Form of Lipschitz operators of substitution in Banach spaces of differentiable functions, Zeszyty Nauk. Politech. Łódz. Mat., 17 (1984), 5-10. Zbl0599.46031MR790835
  16. MERENTES, N., On the composition operator in A C [ a ; b ] , Collect. Math., 42, 1 (1991), 121-127. Zbl0783.47045MR1203182
  17. MERENTES, N. - RIVAS, S., El operador de composición en espacios de funciones con algún tipo de variación acotada, Novena Escuela Venez. Mat., Mérida (Venezuela)1996. 
  18. MERENTES, N. - RIVAS, S., On the composition operator between spaces B V p [ a ; b ] and B V [ a ; b ] , Sci. Math., 1, 3 (1998), 287-292. MR1688242
  19. RIESZ, F., Untersuchungen über Systeme integrierbarer Funktionen, Math. Annalen, 69 (1910), 449-497. Zbl41.0383.01MR1511596DOI10.1007/BF01457637
  20. RUSSELL, A. M., An integral representation for a generalised variation of a function, Bull. Austral. Math. Soc., 11 (1974), 225-229. Zbl0279.26008MR367130DOI10.1017/S0004972700043823

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.