Survey on Probabilistic Methods for the Study of Kac-like Equations
Federico Bassetti; Ester Gabetta
Bollettino dell'Unione Matematica Italiana (2011)
- Volume: 4, Issue: 2, page 187-212
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topReferences
top- ALSMEYER, G. - IKSANOV, A. - RÖSLER, U., On distributional properties of perpetuities. J. Theoret. Probab.22 (2009), 666-682. Zbl1173.60309MR2530108DOI10.1007/s10959-008-0156-8
- AMBROSIO, L. - GIGLI, N. - SAVARÉ, G. , Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics. Birkhäuser Verlag (2008). MR2401600
- BALDASSARRI, A. - PUGLISI, A. - MARINI BETTOLO MARCONI, U., Kinetics models of inelastic gases. Math. Models Methods Appl. Sci., 12 (2002), 965-983. Zbl1174.82326MR1918169DOI10.1142/S0218202502001982
- BASSETTI, F. - LADELLI, L. - MATTHES, D., Central limit theorem for a class of one-dimensional kinetic equations. Probab. Theory Related Fields (2010) (Published on line). Zbl1225.82055MR2800905DOI10.1007/s00440-010-0269-8
- BASSETTI, F. - LADELLI, L. - REGAZZINI, E., Probabilistic study of the speed of approach to equilibrium for an inelastic Kac model. J. Stat. Phys., 133 (2008), 683-710 Zbl1161.82337MR2456941DOI10.1007/s10955-008-9630-z
- BASSETTI, F. - GABETTA, E. - REGAZZINI, E., On the depth of the trees in the McKean representation of Wilds sums. Transport Theory Statist. Phys., 36 (2007), 421-438. Zbl1183.82053MR2357202DOI10.1080/00411450701468217
- BASSETTI, F. - TOSCANI, G., Explicit equilibria in a kinetic model of gambling. Phys. Rev. E, 81 (2010), 66-115. MR2736281DOI10.1103/PhysRevE.81.066115
- BEN-AVRAHAM, D. - BEN-NAIM, E. - LINDENBERG, K. - ROSAS, A., Self-similarity in random collision processes. Phys. Rev. E, 68 (2003).
- BOBYLEV, A. V., The theory of the spatially Uniform Boltzmann equation for Maxwell molecules. Sov. Sci. Review C, 7 (1988), 112-229. MR1128328
- BOBYLEV, A. V. - CARRILLO, J. A. - GAMBA, I. M., On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Statist. Phys., 98 (2000), 743-773. Zbl1056.76071MR1749231DOI10.1023/A:1018627625800
- BOBYLEV, A. V. - CERCIGNANI, C. - GAMBA, I. M., On the self-similar asymptotics for generalized nonlinear kinetic maxwell models. Comm. Math. Phys., 291 (2009), 599-644. Zbl1192.35126MR2534787DOI10.1007/s00220-009-0876-3
- BOBYLEV, A. V. - CERCIGNANI, C., Exact eternal solutions of the Boltzmann equation. J. Stat. Phys., 106 (2002), 1019-1038. Zbl1001.82090MR1889600DOI10.1023/A:1014085719973
- BOBYLEV, A. V. - CERCIGNANI, C., Self similar solutions of the Boltzmann equation and their applications. J. Stat. Phys., 106 (2002), 1039-1071. Zbl1001.82091MR1889601DOI10.1023/A:1014037804043
- BREIMAN, L., Probability. Corrected reprint of the 1968 original. Classics in Applied Mathematics, 7. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992). MR1163370DOI10.1137/1.9781611971286
- CARLEN, E. A. - CARVALHO, M. C. - GABETTA, E., Central limit theorem for Maxwellian molecules and truncation of the Wild expansion. Comm. Pure Appl. Math., 53 (2000), 370-397. Zbl1028.82017MR1725612DOI10.1002/(SICI)1097-0312(200003)53:3<370::AID-CPA4>3.0.CO;2-0
- CARLEN, E. A. - CARVALHO, M. C. - GABETTA, E., On the relation between rates of relaxation and convergence of Wild sums for solutions of the Kac equation. J. Funct. An., 220 (2005), 362-387. Zbl1108.82036MR2119283DOI10.1016/j.jfa.2004.06.011
- CARLEN, E. A. - GABETTA, E. - TOSCANI, G., Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas. Commun. Math. Phys., 199 (1999), 521-546. Zbl0927.76088MR1669689DOI10.1007/s002200050511
- CARLEN, E. A. - GABETTA, E. - REGAZZINI, E., On the rate of explosion for infinite energy solutions of the spatially homogeneous Boltzmann equation. J. Stat. Phys., 129 (2007), 699-723. Zbl1131.82023MR2360229DOI10.1007/s10955-007-9403-0
- CARLEN, E. A. - GABETTA, E. - REGAZZINI, E., Probabilistic investigations on the explosion of solutions of the Kac equation with infinite energy initial distribution. J. Appl. Probab., 45 (2008), 95-106. Zbl1142.60013MR2409313DOI10.1239/jap/1208358954
- CARLEN, E. A. - LU, X., Fast and slow convergence to equilibrium for Maxwellian molecules via Wild sums. J. Stat. Phys., 112 (2003), 59-134. Zbl1079.82012MR1991033DOI10.1023/A:1023623503092
- CERCIGNANI, C., Theory and application of the Boltzmann equation. Elsevier, New York (1975). Zbl0403.76065MR406273
- CERCIGNANI, C., The Boltzmann equation and its applications. Applied Mathematical Sciences, 67. Springer-Verlag, New York (1988). Zbl0646.76001MR1313028DOI10.1007/978-1-4612-1039-9
- CERCIGNANI, C., Mathematical methods in kinetic theory. Second edition. Plenum Press, New York (1990). Zbl0726.76083MR1069558DOI10.1007/978-1-4899-7291-0
- CERCIGNANI, C., Shear flow of a granular material. J. Statist. Phys., 102 (2001), 1407-1415. Zbl0990.82023MR1830452DOI10.1023/A:1004804815471
- CERCIGNANI, C. - ILLNER, R. - PULVIRENTI, M., The mathematical theory of dilute gases. Applied Mathematical Sciences, 106. Springer-Verlag, New York (1994). Zbl0813.76001MR1307620DOI10.1007/978-1-4419-8524-8
- C. CERCIGNANI - E. GABETTA Eds., Transport phenomena and kinetic theory. Applications to Gases, Semiconductors, Photons, and Biological Systems. Model. Simul. Sci. Eng. Technol., BirkhäuserBoston, MA (2007). MR2334302DOI10.1007/978-0-8176-4554-0
- CRAMÉR, H., On the approximation to a stable probability distribution. In Studies in Mathematical Analysis and Related Topics. Stanford Univ. Press. (1962), 70-76. MR146874
- CRAMÉR, H., On asymptotic expansions for sums of independent random variables with a limiting stable distribution. Sankhya Ser. A, 25 (1963), 13-24. Addendum, ibid. 216. MR174079
- DOLERA, E. - GABETTA, E. - REGAZZINI, E., Reaching the best possible rate of convergence to equilibrium for solutions of Kac's equation via central limit theorem. Ann. Appl. Probab., 19 (2009), 186-209. Zbl1163.60007MR2498676DOI10.1214/08-AAP538
- DOLERA, E. - REGAZZINI, E., The role of the central limit theorem in discovering sharp rates of convergence to equilibrium for the solution of the Kac equation. Ann. Appl. Probab., 20 (2010), 430-461. Zbl1195.60033MR2650038DOI10.1214/09-AAP623
- DRMOTA, M., Random trees. An interplay between combinatorics and probability. SpringerWienNew York, Vienna (2009). Zbl1170.05022MR2484382DOI10.1007/978-3-211-75357-6
- DURRETT, R. - LIGGETT, T. M., Fixed points of the smoothing transformation. Z. Wahrsch. Verw. Gebiete, 64 (1983), 275-301. Zbl0506.60097MR716487DOI10.1007/BF00532962
- FORTINI, S. - LADELLI, L. - REGAZZINI, E., A central limit problem for partially exchangeable random variables. Theory Probab. Appl., 41 (1996), 224-246. Zbl0881.60019MR1445757DOI10.1137/S0040585X97975459
- GABETTA, E., Results on optimal rate of convergence to equilibrium for spatially homogeneous Maxwellian gases. In Transport phenomena and kinetic theory (2007), 19-37, Model. Simul. Sci. Eng. Technol., BirkhäuserBoston, MA. Zbl1121.82034MR2334304DOI10.1007/978-0-8176-4554-0_2
- GABETTA, E. - REGAZZINI, E., Some new results for McKean's graphs with applications to Kac's equation. J. Stat. Phys., 125 (2006), 947-974. Zbl1107.82046MR2283786DOI10.1007/s10955-006-9187-7
- GABETTA, E. - REGAZZINI, E., Central limit theorem for the solution of the Kac equation. Ann. Appl. Probab., 18 (2008), 2320-2336. Zbl1161.82018MR2474538DOI10.1214/08-AAP524
- GABETTA, E. - REGAZZINI, E., Central limit theorem for the solution of the Kac equation: Speed of approach to equilibrium in weak metrics. Probab Theory Related Fields, 146 (2010), 451-480. Zbl1181.60030MR2574735DOI10.1007/s00440-008-0196-0
- GNEDENKO, B. V. - KOLMOGOROV, A. N., Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, Cambridge, MA (1954). Zbl0056.36001MR62975
- GOLDIE, C. M. - GRUÈBEL, R., Perpetuities with thin tails. Adv. in Appl. Probab., 28 (1996), 463-480. Zbl0862.60046MR1387886DOI10.2307/1428067
- GOLDIE, C. M. - MALLER, R. A., Stability of perpetuities. Ann. Probab., 28 (2000), 1195-1218. Zbl1023.60037MR1797309DOI10.1214/aop/1019160331
- FISCHER, H., History of the Central Limit Theorem. Springer (2010).
- HALL, P., Two-sided bounds on the rate of convergence to a stable law. Z. Wahrsch. Verw. Gebiete, 57 (1981), 349-364. Zbl0451.60026MR629531DOI10.1007/BF00534829
- IBRAGIMOV, I. A. - LINNIK, Y. V., Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff Publishing, Groningen (1971). Zbl0219.60027MR322926
- KAC, M., Foundations of kinetic theory. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 3 (1954-1955), 171-197. University of California Press, Berkeley and Los Angeles (1956). MR84985
- MCKEAN JR, H. P.., Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas. Arch. Rational Mech. Anal., 21 (1966), 343-367. Zbl1302.60049MR214112DOI10.1007/BF00264463
- MCKEAN JR, H. P.., An exponential formula for solving Boltmann's equation for a Maxwellian gas. J. Combinatorial Theory, 2 (1967), 358-382. Zbl0152.46501MR224348
- LIU, Q., Fixed points of a generalized smoothing transformation and applications to the branching random walk. Adv. in Appl. Probab., 30 (1998), 85-112. Zbl0909.60075MR1618888DOI10.1239/aap/1035227993
- LIU, Q., On generalized multiplicative cascades. Stochastic Process. Appl., 86 (2000), 263-286. Zbl1028.60087MR1741808DOI10.1016/S0304-4149(99)00097-6
- MATTHES, D. - TOSCANI, G., On steady distributions of kinetic models of conservative economies. J. Stat. Phys., 130 (2008), 1087-1117. Zbl1138.91020MR2379241DOI10.1007/s10955-007-9462-2
- MATTHES, D. - TOSCANI, G., Propagation of Sobolev regularity for a class of random kinetic models on the real line. Nonlinearity, 23 (2010), 2081-2100 Zbl1203.82073MR2672637DOI10.1088/0951-7715/23/9/003
- PETROV, V. V., Limit theorems of probability theory. Sequences of independent random variables. Oxford Studies in Probability. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1995). Zbl0826.60001MR1353441
- PULVIRENTI, A. - TOSCANI, G., Asymptotic properties of the inelastic Kac model. J. Statist. Phys., 114 (2004), 1453-1480. Zbl1072.82030MR2039485DOI10.1023/B:JOSS.0000013964.98706.00
- REGAZZINI, E., Convergence to Equilibrium of the Solution of Kac's Kinetic Equation. A Probabilistic View. Bollettino UMI, 2 (2009), 175-198. Zbl1177.82093MR2493650
- RACHEV, S. T., Probability metrics and the stability of stochastic models. Wiley, New York (1991). Zbl0744.60004MR1105086
- SZNITMAN, A. S., Èquations de type de Boltzmann, spatialement homogènes. Z. Wahrsch. Verw. Gebiete, 66 (1986), 559-592. MR753814DOI10.1007/BF00531891
- TANAKA, H., An inequality for a functional of probability distributions and its application to Kac's one-dimensional model of a Maxwellian gas. Z. Wahrsch. Verw. Gebiete, 27 (1973), 47-52. Zbl0302.60005MR362442DOI10.1007/BF00736007
- TANAKA, H., Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Z. Wahrsch. Verw. Gebiete, 46 (1978), 67-105. Zbl0389.60079MR512334DOI10.1007/BF00535689
- TOSCANI, G., Wealth redistribution in conservative linear kinetic models with taxation. Europhysics Letters, 88 (2009), 10007.
- VERVAAT, W., On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables. Adv. Appl. Probab., 11 (1979), 750-783. Zbl0417.60073MR544194DOI10.2307/1426858
- VILLANI, C., Topics in optimal transportation. Graduate Studies in Mathematics, 58. American Mathematical Society, Providence, RI (2003). Zbl1106.90001MR1964483DOI10.1007/b12016
- VILLANI, C., Optimal transport. Old and new. Grundlehren der Mathematischen Wissenschaften, 338. Springer-Verlag, Berlin (2009). Zbl1156.53003MR2459454DOI10.1007/978-3-540-71050-9
- WILD, E., On Boltzmann's equation in the kinetic theory of gases. Proc. Cambridge Philos. Soc., 47 (1951), 602-609. Zbl0043.43703MR42999