Survey on Probabilistic Methods for the Study of Kac-like Equations
Federico Bassetti; Ester Gabetta
Bollettino dell'Unione Matematica Italiana (2011)
- Volume: 4, Issue: 2, page 187-212
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topBassetti, Federico, and Gabetta, Ester. "Survey on Probabilistic Methods for the Study of Kac-like Equations." Bollettino dell'Unione Matematica Italiana 4.2 (2011): 187-212. <http://eudml.org/doc/290744>.
@article{Bassetti2011,
abstract = {This mainly explanatory paper shows how direct application of probabilistic methods, pertaining to central limit general theory, can enlighten us about the relaxation to equilibrium of the solutions of one-dimensional Boltzmann type equations. In particular, conditions under which the solutions of these equations converge to suitable scale mixture of stable distributions are reviewed. In addition, some recent results about the rate of convergence to steady states, with respect to various metrics, are summarized. Finally, by resorting to the above mentioned probabilistic methods, some new results related to a linear kinetic model are proven.},
author = {Bassetti, Federico, Gabetta, Ester},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {187-212},
publisher = {Unione Matematica Italiana},
title = {Survey on Probabilistic Methods for the Study of Kac-like Equations},
url = {http://eudml.org/doc/290744},
volume = {4},
year = {2011},
}
TY - JOUR
AU - Bassetti, Federico
AU - Gabetta, Ester
TI - Survey on Probabilistic Methods for the Study of Kac-like Equations
JO - Bollettino dell'Unione Matematica Italiana
DA - 2011/6//
PB - Unione Matematica Italiana
VL - 4
IS - 2
SP - 187
EP - 212
AB - This mainly explanatory paper shows how direct application of probabilistic methods, pertaining to central limit general theory, can enlighten us about the relaxation to equilibrium of the solutions of one-dimensional Boltzmann type equations. In particular, conditions under which the solutions of these equations converge to suitable scale mixture of stable distributions are reviewed. In addition, some recent results about the rate of convergence to steady states, with respect to various metrics, are summarized. Finally, by resorting to the above mentioned probabilistic methods, some new results related to a linear kinetic model are proven.
LA - eng
UR - http://eudml.org/doc/290744
ER -
References
top- ALSMEYER, G. - IKSANOV, A. - RÖSLER, U., On distributional properties of perpetuities. J. Theoret. Probab.22 (2009), 666-682. Zbl1173.60309MR2530108DOI10.1007/s10959-008-0156-8
- AMBROSIO, L. - GIGLI, N. - SAVARÉ, G. , Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics. Birkhäuser Verlag (2008). MR2401600
- BALDASSARRI, A. - PUGLISI, A. - MARINI BETTOLO MARCONI, U., Kinetics models of inelastic gases. Math. Models Methods Appl. Sci., 12 (2002), 965-983. Zbl1174.82326MR1918169DOI10.1142/S0218202502001982
- BASSETTI, F. - LADELLI, L. - MATTHES, D., Central limit theorem for a class of one-dimensional kinetic equations. Probab. Theory Related Fields (2010) (Published on line). Zbl1225.82055MR2800905DOI10.1007/s00440-010-0269-8
- BASSETTI, F. - LADELLI, L. - REGAZZINI, E., Probabilistic study of the speed of approach to equilibrium for an inelastic Kac model. J. Stat. Phys., 133 (2008), 683-710 Zbl1161.82337MR2456941DOI10.1007/s10955-008-9630-z
- BASSETTI, F. - GABETTA, E. - REGAZZINI, E., On the depth of the trees in the McKean representation of Wilds sums. Transport Theory Statist. Phys., 36 (2007), 421-438. Zbl1183.82053MR2357202DOI10.1080/00411450701468217
- BASSETTI, F. - TOSCANI, G., Explicit equilibria in a kinetic model of gambling. Phys. Rev. E, 81 (2010), 66-115. MR2736281DOI10.1103/PhysRevE.81.066115
- BEN-AVRAHAM, D. - BEN-NAIM, E. - LINDENBERG, K. - ROSAS, A., Self-similarity in random collision processes. Phys. Rev. E, 68 (2003).
- BOBYLEV, A. V., The theory of the spatially Uniform Boltzmann equation for Maxwell molecules. Sov. Sci. Review C, 7 (1988), 112-229. MR1128328
- BOBYLEV, A. V. - CARRILLO, J. A. - GAMBA, I. M., On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Statist. Phys., 98 (2000), 743-773. Zbl1056.76071MR1749231DOI10.1023/A:1018627625800
- BOBYLEV, A. V. - CERCIGNANI, C. - GAMBA, I. M., On the self-similar asymptotics for generalized nonlinear kinetic maxwell models. Comm. Math. Phys., 291 (2009), 599-644. Zbl1192.35126MR2534787DOI10.1007/s00220-009-0876-3
- BOBYLEV, A. V. - CERCIGNANI, C., Exact eternal solutions of the Boltzmann equation. J. Stat. Phys., 106 (2002), 1019-1038. Zbl1001.82090MR1889600DOI10.1023/A:1014085719973
- BOBYLEV, A. V. - CERCIGNANI, C., Self similar solutions of the Boltzmann equation and their applications. J. Stat. Phys., 106 (2002), 1039-1071. Zbl1001.82091MR1889601DOI10.1023/A:1014037804043
- BREIMAN, L., Probability. Corrected reprint of the 1968 original. Classics in Applied Mathematics, 7. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992). MR1163370DOI10.1137/1.9781611971286
- CARLEN, E. A. - CARVALHO, M. C. - GABETTA, E., Central limit theorem for Maxwellian molecules and truncation of the Wild expansion. Comm. Pure Appl. Math., 53 (2000), 370-397. Zbl1028.82017MR1725612DOI10.1002/(SICI)1097-0312(200003)53:3<370::AID-CPA4>3.0.CO;2-0
- CARLEN, E. A. - CARVALHO, M. C. - GABETTA, E., On the relation between rates of relaxation and convergence of Wild sums for solutions of the Kac equation. J. Funct. An., 220 (2005), 362-387. Zbl1108.82036MR2119283DOI10.1016/j.jfa.2004.06.011
- CARLEN, E. A. - GABETTA, E. - TOSCANI, G., Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas. Commun. Math. Phys., 199 (1999), 521-546. Zbl0927.76088MR1669689DOI10.1007/s002200050511
- CARLEN, E. A. - GABETTA, E. - REGAZZINI, E., On the rate of explosion for infinite energy solutions of the spatially homogeneous Boltzmann equation. J. Stat. Phys., 129 (2007), 699-723. Zbl1131.82023MR2360229DOI10.1007/s10955-007-9403-0
- CARLEN, E. A. - GABETTA, E. - REGAZZINI, E., Probabilistic investigations on the explosion of solutions of the Kac equation with infinite energy initial distribution. J. Appl. Probab., 45 (2008), 95-106. Zbl1142.60013MR2409313DOI10.1239/jap/1208358954
- CARLEN, E. A. - LU, X., Fast and slow convergence to equilibrium for Maxwellian molecules via Wild sums. J. Stat. Phys., 112 (2003), 59-134. Zbl1079.82012MR1991033DOI10.1023/A:1023623503092
- CERCIGNANI, C., Theory and application of the Boltzmann equation. Elsevier, New York (1975). Zbl0403.76065MR406273
- CERCIGNANI, C., The Boltzmann equation and its applications. Applied Mathematical Sciences, 67. Springer-Verlag, New York (1988). Zbl0646.76001MR1313028DOI10.1007/978-1-4612-1039-9
- CERCIGNANI, C., Mathematical methods in kinetic theory. Second edition. Plenum Press, New York (1990). Zbl0726.76083MR1069558DOI10.1007/978-1-4899-7291-0
- CERCIGNANI, C., Shear flow of a granular material. J. Statist. Phys., 102 (2001), 1407-1415. Zbl0990.82023MR1830452DOI10.1023/A:1004804815471
- CERCIGNANI, C. - ILLNER, R. - PULVIRENTI, M., The mathematical theory of dilute gases. Applied Mathematical Sciences, 106. Springer-Verlag, New York (1994). Zbl0813.76001MR1307620DOI10.1007/978-1-4419-8524-8
- C. CERCIGNANI - E. GABETTA Eds., Transport phenomena and kinetic theory. Applications to Gases, Semiconductors, Photons, and Biological Systems. Model. Simul. Sci. Eng. Technol., BirkhäuserBoston, MA (2007). MR2334302DOI10.1007/978-0-8176-4554-0
- CRAMÉR, H., On the approximation to a stable probability distribution. In Studies in Mathematical Analysis and Related Topics. Stanford Univ. Press. (1962), 70-76. MR146874
- CRAMÉR, H., On asymptotic expansions for sums of independent random variables with a limiting stable distribution. Sankhya Ser. A, 25 (1963), 13-24. Addendum, ibid. 216. MR174079
- DOLERA, E. - GABETTA, E. - REGAZZINI, E., Reaching the best possible rate of convergence to equilibrium for solutions of Kac's equation via central limit theorem. Ann. Appl. Probab., 19 (2009), 186-209. Zbl1163.60007MR2498676DOI10.1214/08-AAP538
- DOLERA, E. - REGAZZINI, E., The role of the central limit theorem in discovering sharp rates of convergence to equilibrium for the solution of the Kac equation. Ann. Appl. Probab., 20 (2010), 430-461. Zbl1195.60033MR2650038DOI10.1214/09-AAP623
- DRMOTA, M., Random trees. An interplay between combinatorics and probability. SpringerWienNew York, Vienna (2009). Zbl1170.05022MR2484382DOI10.1007/978-3-211-75357-6
- DURRETT, R. - LIGGETT, T. M., Fixed points of the smoothing transformation. Z. Wahrsch. Verw. Gebiete, 64 (1983), 275-301. Zbl0506.60097MR716487DOI10.1007/BF00532962
- FORTINI, S. - LADELLI, L. - REGAZZINI, E., A central limit problem for partially exchangeable random variables. Theory Probab. Appl., 41 (1996), 224-246. Zbl0881.60019MR1445757DOI10.1137/S0040585X97975459
- GABETTA, E., Results on optimal rate of convergence to equilibrium for spatially homogeneous Maxwellian gases. In Transport phenomena and kinetic theory (2007), 19-37, Model. Simul. Sci. Eng. Technol., BirkhäuserBoston, MA. Zbl1121.82034MR2334304DOI10.1007/978-0-8176-4554-0_2
- GABETTA, E. - REGAZZINI, E., Some new results for McKean's graphs with applications to Kac's equation. J. Stat. Phys., 125 (2006), 947-974. Zbl1107.82046MR2283786DOI10.1007/s10955-006-9187-7
- GABETTA, E. - REGAZZINI, E., Central limit theorem for the solution of the Kac equation. Ann. Appl. Probab., 18 (2008), 2320-2336. Zbl1161.82018MR2474538DOI10.1214/08-AAP524
- GABETTA, E. - REGAZZINI, E., Central limit theorem for the solution of the Kac equation: Speed of approach to equilibrium in weak metrics. Probab Theory Related Fields, 146 (2010), 451-480. Zbl1181.60030MR2574735DOI10.1007/s00440-008-0196-0
- GNEDENKO, B. V. - KOLMOGOROV, A. N., Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, Cambridge, MA (1954). Zbl0056.36001MR62975
- GOLDIE, C. M. - GRUÈBEL, R., Perpetuities with thin tails. Adv. in Appl. Probab., 28 (1996), 463-480. Zbl0862.60046MR1387886DOI10.2307/1428067
- GOLDIE, C. M. - MALLER, R. A., Stability of perpetuities. Ann. Probab., 28 (2000), 1195-1218. Zbl1023.60037MR1797309DOI10.1214/aop/1019160331
- FISCHER, H., History of the Central Limit Theorem. Springer (2010).
- HALL, P., Two-sided bounds on the rate of convergence to a stable law. Z. Wahrsch. Verw. Gebiete, 57 (1981), 349-364. Zbl0451.60026MR629531DOI10.1007/BF00534829
- IBRAGIMOV, I. A. - LINNIK, Y. V., Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff Publishing, Groningen (1971). Zbl0219.60027MR322926
- KAC, M., Foundations of kinetic theory. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 3 (1954-1955), 171-197. University of California Press, Berkeley and Los Angeles (1956). MR84985
- MCKEAN JR, H. P.., Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas. Arch. Rational Mech. Anal., 21 (1966), 343-367. Zbl1302.60049MR214112DOI10.1007/BF00264463
- MCKEAN JR, H. P.., An exponential formula for solving Boltmann's equation for a Maxwellian gas. J. Combinatorial Theory, 2 (1967), 358-382. Zbl0152.46501MR224348
- LIU, Q., Fixed points of a generalized smoothing transformation and applications to the branching random walk. Adv. in Appl. Probab., 30 (1998), 85-112. Zbl0909.60075MR1618888DOI10.1239/aap/1035227993
- LIU, Q., On generalized multiplicative cascades. Stochastic Process. Appl., 86 (2000), 263-286. Zbl1028.60087MR1741808DOI10.1016/S0304-4149(99)00097-6
- MATTHES, D. - TOSCANI, G., On steady distributions of kinetic models of conservative economies. J. Stat. Phys., 130 (2008), 1087-1117. Zbl1138.91020MR2379241DOI10.1007/s10955-007-9462-2
- MATTHES, D. - TOSCANI, G., Propagation of Sobolev regularity for a class of random kinetic models on the real line. Nonlinearity, 23 (2010), 2081-2100 Zbl1203.82073MR2672637DOI10.1088/0951-7715/23/9/003
- PETROV, V. V., Limit theorems of probability theory. Sequences of independent random variables. Oxford Studies in Probability. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1995). Zbl0826.60001MR1353441
- PULVIRENTI, A. - TOSCANI, G., Asymptotic properties of the inelastic Kac model. J. Statist. Phys., 114 (2004), 1453-1480. Zbl1072.82030MR2039485DOI10.1023/B:JOSS.0000013964.98706.00
- REGAZZINI, E., Convergence to Equilibrium of the Solution of Kac's Kinetic Equation. A Probabilistic View. Bollettino UMI, 2 (2009), 175-198. Zbl1177.82093MR2493650
- RACHEV, S. T., Probability metrics and the stability of stochastic models. Wiley, New York (1991). Zbl0744.60004MR1105086
- SZNITMAN, A. S., Èquations de type de Boltzmann, spatialement homogènes. Z. Wahrsch. Verw. Gebiete, 66 (1986), 559-592. MR753814DOI10.1007/BF00531891
- TANAKA, H., An inequality for a functional of probability distributions and its application to Kac's one-dimensional model of a Maxwellian gas. Z. Wahrsch. Verw. Gebiete, 27 (1973), 47-52. Zbl0302.60005MR362442DOI10.1007/BF00736007
- TANAKA, H., Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Z. Wahrsch. Verw. Gebiete, 46 (1978), 67-105. Zbl0389.60079MR512334DOI10.1007/BF00535689
- TOSCANI, G., Wealth redistribution in conservative linear kinetic models with taxation. Europhysics Letters, 88 (2009), 10007.
- VERVAAT, W., On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables. Adv. Appl. Probab., 11 (1979), 750-783. Zbl0417.60073MR544194DOI10.2307/1426858
- VILLANI, C., Topics in optimal transportation. Graduate Studies in Mathematics, 58. American Mathematical Society, Providence, RI (2003). Zbl1106.90001MR1964483DOI10.1007/b12016
- VILLANI, C., Optimal transport. Old and new. Grundlehren der Mathematischen Wissenschaften, 338. Springer-Verlag, Berlin (2009). Zbl1156.53003MR2459454DOI10.1007/978-3-540-71050-9
- WILD, E., On Boltzmann's equation in the kinetic theory of gases. Proc. Cambridge Philos. Soc., 47 (1951), 602-609. Zbl0043.43703MR42999
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.