Convergence to Equilibrium of the Solution of Kac's Kinetic Equation. A Probabilistic View

Eugenio Regazzini

Bollettino dell'Unione Matematica Italiana (2009)

  • Volume: 2, Issue: 1, page 175-198
  • ISSN: 0392-4041

Abstract

top
Let f ( , t ) be the probability density function representing the solution of Kac's Boltzmann-like equation at time t , with initial data f 0 , and let g σ be the Gaussian density with zero mean and variance σ 2 , σ 2 being the value of the second moment of f 0 . Henry McKean Jr. put forward the conjecture that the total variation distance between f ( , t ) and g σ goes to zero, as t + , with an exponential rate equal to - 1 / 4 . This lecture aims at explaining the main efforts made to a view to validating this conjecture, and concludes with the theorem stating that this holds true whenever f 0 has finite fourth moment and its Fourier transform φ 0 satisfies | φ 0 ( ξ ) | = o ( | ξ | - p ) as | ξ | + , for some p > 0 . The first part of the lecture expounds the derivation of the Kac Boltzmann-like equation from the Kac master equation. A detailed description of the probabilistic methods resorted to prove the above-mentioned theorem is then given. The final part mentions further applications of these methods to other kinetic models.

How to cite

top

Regazzini, Eugenio. "Convergence to Equilibrium of the Solution of Kac's Kinetic Equation. A Probabilistic View." Bollettino dell'Unione Matematica Italiana 2.1 (2009): 175-198. <http://eudml.org/doc/290569>.

@article{Regazzini2009,
abstract = {Let $f(\cdot, t)$ be the probability density function representing the solution of Kac's Boltzmann-like equation at time $t$, with initial data $f_\{0\}$, and let $g_\{\sigma\}$ be the Gaussian density with zero mean and variance $\sigma^\{2\}$, $\sigma^\{2\}$ being the value of the second moment of $f_\{0\}$. Henry McKean Jr. put forward the conjecture that the total variation distance between $f(\cdot,t)$ and $g_\{\sigma\}$ goes to zero, as $t \to + \infty$, with an exponential rate equal to $-1/4$. This lecture aims at explaining the main efforts made to a view to validating this conjecture, and concludes with the theorem stating that this holds true whenever $f_\{0\}$ has finite fourth moment and its Fourier transform $\varphi_\{0\}$ satisfies $|\varphi_\{0\}(\xi)| = o(|\xi|^\{-p\})$ as $|\xi| \to + \infty$, for some $p > 0$. The first part of the lecture expounds the derivation of the Kac Boltzmann-like equation from the Kac master equation. A detailed description of the probabilistic methods resorted to prove the above-mentioned theorem is then given. The final part mentions further applications of these methods to other kinetic models.},
author = {Regazzini, Eugenio},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {175-198},
publisher = {Unione Matematica Italiana},
title = {Convergence to Equilibrium of the Solution of Kac's Kinetic Equation. A Probabilistic View},
url = {http://eudml.org/doc/290569},
volume = {2},
year = {2009},
}

TY - JOUR
AU - Regazzini, Eugenio
TI - Convergence to Equilibrium of the Solution of Kac's Kinetic Equation. A Probabilistic View
JO - Bollettino dell'Unione Matematica Italiana
DA - 2009/2//
PB - Unione Matematica Italiana
VL - 2
IS - 1
SP - 175
EP - 198
AB - Let $f(\cdot, t)$ be the probability density function representing the solution of Kac's Boltzmann-like equation at time $t$, with initial data $f_{0}$, and let $g_{\sigma}$ be the Gaussian density with zero mean and variance $\sigma^{2}$, $\sigma^{2}$ being the value of the second moment of $f_{0}$. Henry McKean Jr. put forward the conjecture that the total variation distance between $f(\cdot,t)$ and $g_{\sigma}$ goes to zero, as $t \to + \infty$, with an exponential rate equal to $-1/4$. This lecture aims at explaining the main efforts made to a view to validating this conjecture, and concludes with the theorem stating that this holds true whenever $f_{0}$ has finite fourth moment and its Fourier transform $\varphi_{0}$ satisfies $|\varphi_{0}(\xi)| = o(|\xi|^{-p})$ as $|\xi| \to + \infty$, for some $p > 0$. The first part of the lecture expounds the derivation of the Kac Boltzmann-like equation from the Kac master equation. A detailed description of the probabilistic methods resorted to prove the above-mentioned theorem is then given. The final part mentions further applications of these methods to other kinetic models.
LA - eng
UR - http://eudml.org/doc/290569
ER -

References

top
  1. BASSETTI, F. - LADELLI, L. - REGAZZINI, E., Probabilistic study of the speed of approach to equilibrium for an inelastic Kac model. To appear in J. Stat Phys. Zbl1161.82337MR2456941DOI10.1007/s10955-008-9630-z
  2. BEURLING, A., Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionnelle. In 9th Congr. Math: Scandinaves (Helsinki, 1938), 199-210. Tryekeri, Helsinki (1939). Zbl65.0483.02
  3. BILLINGSLEY, P., Probability and Measure, 3rd ed. Wiley, New York (1995). MR1324786
  4. BILLINGSLEY, P., Convergence of Probability Measures, 2nd ed. Wiley, New York (1999). Zbl0944.60003MR1700749DOI10.1002/9780470316962
  5. CARLEN, E. A. - CARVALHO, M. C., Probabilistic methods in kinetic theory. Riv. Mat. Univ. Parma, 7 (2003), 101-149. Zbl1140.82324MR2052787
  6. CARLEN, E. A. - CARVALHO, M. C. - GABETTA, E., On the relation between rates of relaxation and convergence of Wild sums for solutions of the Kac equation. Journal of Functional Analysis, 220 (2005), 362-387. Zbl1108.82036MR2119283DOI10.1016/j.jfa.2004.06.011
  7. CARLEN, E. A. - CARVALHO, M. C. - LOSS, M., Determination of the spectral gap for Kac's master equation and related stochastic evolution. Acta Mat., 191 (2003), 1-54. Zbl1080.60091MR2020418DOI10.1007/BF02392695
  8. CARLEN, E. A. - GABETTA, E. - REGAZZINI, E., Probabilistic investigations on the explosion of solutions of the Kac equation with infinite energy initial distribution. J. Appl. Prob.45 (2008), 95-106. Zbl1142.60013MR2409313DOI10.1239/jap/1208358954
  9. CARLEN, E. A. - GABETTA, E. - TOSCANI, G., Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas. Comm. Math. Phys.305 (1999), 521-546. Zbl0927.76088MR1669689DOI10.1007/s002200050511
  10. CHEN, L. H. Y. - SHAO, Q., A non-uniform Berry-Esseen bound via Stein's method. Probab. Theory Related Fields, 120 (2001), 236-254. Zbl0996.60029MR1841329DOI10.1007/PL00008782
  11. Y. S CHOW - TEICHER, H., Probability Theory. Independence, Interchangeability, Martingales, 3rd edition. Springer Verlag, New York (1997). MR1476912DOI10.1007/978-1-4612-1950-7
  12. COMTET, L., Analyse Combinatoire. Presses universitaires de France, Paris (1970). 
  13. DIACONIS, P. - SALOFF-COSTE, L., Bounds for Kac's master equation. Comm. Math. Phys., 209 (2000), 729-755. Zbl0953.60098MR1743614DOI10.1007/s002200050036
  14. DOLERA, E., Applicazione del Teorema Centrale del Limite all'Analisi della Velocità di Convergenza dell'Equilibrio della Soluzione dell'Equazione di Kac, nella Metrica della Variazione Totale. Degree thesis (2006). Università degli Studi di Pavia, Dipartimento di Matematica. 
  15. DOLERA, E. - GABETTA, E. - REGAZZINI, E., Reaching the best possible rate of convergence to equilibrium for solutions of Kac's equation via central limit theorem. To appear in Ann. Applied Probability. Zbl1163.60007MR2498676DOI10.1214/08-AAP538
  16. DUDLEY, R. M., Real Analysis and Probability, revised reprint. Cambridge University Press, Cambridge (2002). MR1932358DOI10.1017/CBO9780511755347
  17. FELLER, W., On the Berry-Esseen theorem. Z. Wahrsch. Verw. Gebiete, 10 (1968), 261-268. Zbl0167.17304MR239639DOI10.1007/BF00536279
  18. FORTINI, S. - LADELLI, L. - REGAZZINI, E., A central limit problem for partially exchangeable random variables. Theory Probab. Appl., 41 (1996), 224-246. Zbl0881.60019MR1445757DOI10.1137/S0040585X97975459
  19. GABETTA, E. - REGAZZINI, E., Some new results for McKean's graphs with applications to Kac's equation. J. Statist. Phys., 125 (2006), 947-974. Zbl1107.82046MR2283786DOI10.1007/s10955-006-9187-7
  20. GABETTA, E. - REGAZZINI, E., Central limit theorem for the solution of the Kac equation. To appear in Ann. Applied Probability. Zbl1161.82018MR2474538DOI10.1214/08-AAP524
  21. GABETTA, E. - REGAZZINI, E., Central limit theorems for solutions of the Kac equation: speed of approach to equilibrium in weak metrics. Revised for Probab. Theory Related Fields. Zbl1181.60030MR2574735DOI10.1007/s00440-008-0196-0
  22. GINI, C., Five papers in Atti del R. Ist. Veneto di Sc. Lettere ed Arti, 74 (1915), 185-213, 583-610, 1903-1942, 75 (1916) 309-331, 1419-1461. 
  23. JANVRESSE, E., Spectral gap for Kac's model of Boltzmann equation. The Annals of Probability, 29 (2001), 288-304. Zbl1034.82049MR1825150DOI10.1214/aop/1008956330
  24. KAC, M., Foundations of kinetic theory. Proc. 3rd Berkeley Sympos. (J. Neyman, ed.) 3 (1956), 171-197. Zbl0072.42802MR84985
  25. KAC, M., M. Probability and Related Topics in Physical Science. Wiley, New York (1959). Zbl0087.33003
  26. LÉVY, P., Calcul des Probabilités. Gauthier-Villars, Paris (1925). 
  27. LINNIK, Y. V., An information-theoretic proof of the central limit theorem with the Lindeberg condition. Theory Prob. Appl., 4 (1959), 288-299. Zbl0097.13103MR124081
  28. MATTHES, D. - TOSCANI, G., On steady distributions of kinetic models of conservative economies. J. Stat. Phys., 130 (2008), 1087-1117. Zbl1138.91020MR2379241DOI10.1007/s10955-007-9462-2
  29. MCKEAN, H. P., Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas. Arch. Rational Mech. Anal., 21 (1966), 343-367. Zbl1302.60049MR214112DOI10.1007/BF00264463
  30. PETROV, V. V., Sums of Independent Random Variables. Springer-Verlag, Berlin (1975). Zbl0322.60042MR388499
  31. PETROV, V. V., Limit Theorems of Probability Theory. Clarendon Press, Oxford (1995). Zbl0826.60001MR1353441
  32. RACHEV, S. T., Probability Metrics and the Stability of Stochastic Models. Wiley, Chichester (1991). Zbl0744.60004MR1105086
  33. STROOCK, D. W., Probability Theory, an Analytic View. Cambridge University Press, Cambridge (1993). Zbl0925.60004MR1267569
  34. TANAKA, S., An extension of Wild's sum for solving certain nonlinear equations of measures. Proc. Japan Acad., 44 (1968), 884-889. Zbl0177.44902MR237927
  35. VILLANI, C., Mathematics of granular materials. J. Statist. Phys.124 (2006), 781-822. Zbl1134.82040MR2264625DOI10.1007/s10955-006-9038-6
  36. VILLANI, C., Entropy production and convergence to equilibrium. (Lectures from a Special Semester at the Centre Emile Borel, Inst. H. Poincaré, Paris 2001). Lecture Notes in Math., 1916 (2008), 1-70. MR2409050DOI10.1007/978-3-540-73705-6_1
  37. WILD, E., On Boltzmann's equation in the kinetic theory of gases. Proc. Cambridge Philos. Soc., 47 (1951), 602-609. Zbl0043.43703MR42999

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.