Convergence to Equilibrium of the Solution of Kac's Kinetic Equation. A Probabilistic View
Bollettino dell'Unione Matematica Italiana (2009)
- Volume: 2, Issue: 1, page 175-198
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topRegazzini, Eugenio. "Convergence to Equilibrium of the Solution of Kac's Kinetic Equation. A Probabilistic View." Bollettino dell'Unione Matematica Italiana 2.1 (2009): 175-198. <http://eudml.org/doc/290569>.
@article{Regazzini2009,
abstract = {Let $f(\cdot, t)$ be the probability density function representing the solution of Kac's Boltzmann-like equation at time $t$, with initial data $f_\{0\}$, and let $g_\{\sigma\}$ be the Gaussian density with zero mean and variance $\sigma^\{2\}$, $\sigma^\{2\}$ being the value of the second moment of $f_\{0\}$. Henry McKean Jr. put forward the conjecture that the total variation distance between $f(\cdot,t)$ and $g_\{\sigma\}$ goes to zero, as $t \to + \infty$, with an exponential rate equal to $-1/4$. This lecture aims at explaining the main efforts made to a view to validating this conjecture, and concludes with the theorem stating that this holds true whenever $f_\{0\}$ has finite fourth moment and its Fourier transform $\varphi_\{0\}$ satisfies $|\varphi_\{0\}(\xi)| = o(|\xi|^\{-p\})$ as $|\xi| \to + \infty$, for some $p > 0$. The first part of the lecture expounds the derivation of the Kac Boltzmann-like equation from the Kac master equation. A detailed description of the probabilistic methods resorted to prove the above-mentioned theorem is then given. The final part mentions further applications of these methods to other kinetic models.},
author = {Regazzini, Eugenio},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {175-198},
publisher = {Unione Matematica Italiana},
title = {Convergence to Equilibrium of the Solution of Kac's Kinetic Equation. A Probabilistic View},
url = {http://eudml.org/doc/290569},
volume = {2},
year = {2009},
}
TY - JOUR
AU - Regazzini, Eugenio
TI - Convergence to Equilibrium of the Solution of Kac's Kinetic Equation. A Probabilistic View
JO - Bollettino dell'Unione Matematica Italiana
DA - 2009/2//
PB - Unione Matematica Italiana
VL - 2
IS - 1
SP - 175
EP - 198
AB - Let $f(\cdot, t)$ be the probability density function representing the solution of Kac's Boltzmann-like equation at time $t$, with initial data $f_{0}$, and let $g_{\sigma}$ be the Gaussian density with zero mean and variance $\sigma^{2}$, $\sigma^{2}$ being the value of the second moment of $f_{0}$. Henry McKean Jr. put forward the conjecture that the total variation distance between $f(\cdot,t)$ and $g_{\sigma}$ goes to zero, as $t \to + \infty$, with an exponential rate equal to $-1/4$. This lecture aims at explaining the main efforts made to a view to validating this conjecture, and concludes with the theorem stating that this holds true whenever $f_{0}$ has finite fourth moment and its Fourier transform $\varphi_{0}$ satisfies $|\varphi_{0}(\xi)| = o(|\xi|^{-p})$ as $|\xi| \to + \infty$, for some $p > 0$. The first part of the lecture expounds the derivation of the Kac Boltzmann-like equation from the Kac master equation. A detailed description of the probabilistic methods resorted to prove the above-mentioned theorem is then given. The final part mentions further applications of these methods to other kinetic models.
LA - eng
UR - http://eudml.org/doc/290569
ER -
References
top- BASSETTI, F. - LADELLI, L. - REGAZZINI, E., Probabilistic study of the speed of approach to equilibrium for an inelastic Kac model. To appear in J. Stat Phys. Zbl1161.82337MR2456941DOI10.1007/s10955-008-9630-z
- BEURLING, A., Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionnelle. In 9th Congr. Math: Scandinaves (Helsinki, 1938), 199-210. Tryekeri, Helsinki (1939). Zbl65.0483.02
- BILLINGSLEY, P., Probability and Measure, 3rd ed. Wiley, New York (1995). MR1324786
- BILLINGSLEY, P., Convergence of Probability Measures, 2nd ed. Wiley, New York (1999). Zbl0944.60003MR1700749DOI10.1002/9780470316962
- CARLEN, E. A. - CARVALHO, M. C., Probabilistic methods in kinetic theory. Riv. Mat. Univ. Parma, 7 (2003), 101-149. Zbl1140.82324MR2052787
- CARLEN, E. A. - CARVALHO, M. C. - GABETTA, E., On the relation between rates of relaxation and convergence of Wild sums for solutions of the Kac equation. Journal of Functional Analysis, 220 (2005), 362-387. Zbl1108.82036MR2119283DOI10.1016/j.jfa.2004.06.011
- CARLEN, E. A. - CARVALHO, M. C. - LOSS, M., Determination of the spectral gap for Kac's master equation and related stochastic evolution. Acta Mat., 191 (2003), 1-54. Zbl1080.60091MR2020418DOI10.1007/BF02392695
- CARLEN, E. A. - GABETTA, E. - REGAZZINI, E., Probabilistic investigations on the explosion of solutions of the Kac equation with infinite energy initial distribution. J. Appl. Prob.45 (2008), 95-106. Zbl1142.60013MR2409313DOI10.1239/jap/1208358954
- CARLEN, E. A. - GABETTA, E. - TOSCANI, G., Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas. Comm. Math. Phys.305 (1999), 521-546. Zbl0927.76088MR1669689DOI10.1007/s002200050511
- CHEN, L. H. Y. - SHAO, Q., A non-uniform Berry-Esseen bound via Stein's method. Probab. Theory Related Fields, 120 (2001), 236-254. Zbl0996.60029MR1841329DOI10.1007/PL00008782
- Y. S CHOW - TEICHER, H., Probability Theory. Independence, Interchangeability, Martingales, 3rd edition. Springer Verlag, New York (1997). MR1476912DOI10.1007/978-1-4612-1950-7
- COMTET, L., Analyse Combinatoire. Presses universitaires de France, Paris (1970).
- DIACONIS, P. - SALOFF-COSTE, L., Bounds for Kac's master equation. Comm. Math. Phys., 209 (2000), 729-755. Zbl0953.60098MR1743614DOI10.1007/s002200050036
- DOLERA, E., Applicazione del Teorema Centrale del Limite all'Analisi della Velocità di Convergenza dell'Equilibrio della Soluzione dell'Equazione di Kac, nella Metrica della Variazione Totale. Degree thesis (2006). Università degli Studi di Pavia, Dipartimento di Matematica.
- DOLERA, E. - GABETTA, E. - REGAZZINI, E., Reaching the best possible rate of convergence to equilibrium for solutions of Kac's equation via central limit theorem. To appear in Ann. Applied Probability. Zbl1163.60007MR2498676DOI10.1214/08-AAP538
- DUDLEY, R. M., Real Analysis and Probability, revised reprint. Cambridge University Press, Cambridge (2002). MR1932358DOI10.1017/CBO9780511755347
- FELLER, W., On the Berry-Esseen theorem. Z. Wahrsch. Verw. Gebiete, 10 (1968), 261-268. Zbl0167.17304MR239639DOI10.1007/BF00536279
- FORTINI, S. - LADELLI, L. - REGAZZINI, E., A central limit problem for partially exchangeable random variables. Theory Probab. Appl., 41 (1996), 224-246. Zbl0881.60019MR1445757DOI10.1137/S0040585X97975459
- GABETTA, E. - REGAZZINI, E., Some new results for McKean's graphs with applications to Kac's equation. J. Statist. Phys., 125 (2006), 947-974. Zbl1107.82046MR2283786DOI10.1007/s10955-006-9187-7
- GABETTA, E. - REGAZZINI, E., Central limit theorem for the solution of the Kac equation. To appear in Ann. Applied Probability. Zbl1161.82018MR2474538DOI10.1214/08-AAP524
- GABETTA, E. - REGAZZINI, E., Central limit theorems for solutions of the Kac equation: speed of approach to equilibrium in weak metrics. Revised for Probab. Theory Related Fields. Zbl1181.60030MR2574735DOI10.1007/s00440-008-0196-0
- GINI, C., Five papers in Atti del R. Ist. Veneto di Sc. Lettere ed Arti, 74 (1915), 185-213, 583-610, 1903-1942, 75 (1916) 309-331, 1419-1461.
- JANVRESSE, E., Spectral gap for Kac's model of Boltzmann equation. The Annals of Probability, 29 (2001), 288-304. Zbl1034.82049MR1825150DOI10.1214/aop/1008956330
- KAC, M., Foundations of kinetic theory. Proc. 3rd Berkeley Sympos. (J. Neyman, ed.) 3 (1956), 171-197. Zbl0072.42802MR84985
- KAC, M., M. Probability and Related Topics in Physical Science. Wiley, New York (1959). Zbl0087.33003
- LÉVY, P., Calcul des Probabilités. Gauthier-Villars, Paris (1925).
- LINNIK, Y. V., An information-theoretic proof of the central limit theorem with the Lindeberg condition. Theory Prob. Appl., 4 (1959), 288-299. Zbl0097.13103MR124081
- MATTHES, D. - TOSCANI, G., On steady distributions of kinetic models of conservative economies. J. Stat. Phys., 130 (2008), 1087-1117. Zbl1138.91020MR2379241DOI10.1007/s10955-007-9462-2
- MCKEAN, H. P., Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas. Arch. Rational Mech. Anal., 21 (1966), 343-367. Zbl1302.60049MR214112DOI10.1007/BF00264463
- PETROV, V. V., Sums of Independent Random Variables. Springer-Verlag, Berlin (1975). Zbl0322.60042MR388499
- PETROV, V. V., Limit Theorems of Probability Theory. Clarendon Press, Oxford (1995). Zbl0826.60001MR1353441
- RACHEV, S. T., Probability Metrics and the Stability of Stochastic Models. Wiley, Chichester (1991). Zbl0744.60004MR1105086
- STROOCK, D. W., Probability Theory, an Analytic View. Cambridge University Press, Cambridge (1993). Zbl0925.60004MR1267569
- TANAKA, S., An extension of Wild's sum for solving certain nonlinear equations of measures. Proc. Japan Acad., 44 (1968), 884-889. Zbl0177.44902MR237927
- VILLANI, C., Mathematics of granular materials. J. Statist. Phys.124 (2006), 781-822. Zbl1134.82040MR2264625DOI10.1007/s10955-006-9038-6
- VILLANI, C., Entropy production and convergence to equilibrium. (Lectures from a Special Semester at the Centre Emile Borel, Inst. H. Poincaré, Paris 2001). Lecture Notes in Math., 1916 (2008), 1-70. MR2409050DOI10.1007/978-3-540-73705-6_1
- WILD, E., On Boltzmann's equation in the kinetic theory of gases. Proc. Cambridge Philos. Soc., 47 (1951), 602-609. Zbl0043.43703MR42999
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.