A Characterization of a Modulus of Smoothness in Multidimensional Setting
Bollettino dell'Unione Matematica Italiana (2011)
- Volume: 4, Issue: 1, page 79-108
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topAngeloni, Laura. "A Characterization of a Modulus of Smoothness in Multidimensional Setting." Bollettino dell'Unione Matematica Italiana 4.1 (2011): 79-108. <http://eudml.org/doc/290753>.
@article{Angeloni2011,
abstract = {A classical result of approximation theory states that $\lim_\{\delta \to 0\} \omega(f, \delta) = 0$, where $\omega$ is the modulus of smoothness of $f$ defined by means of the variation functional, if and only if $f$ is absolutely continuous. Such theorem is crucial in order to obtain results about convergence and order of approximation for linear and non-linear integral operators in BV-spaces. It was an open problem to extend the above result to the setting of $\varphi$-variation in the multidimensional frame. In this paper, working with a concept of multidimensional W-variation introduced in [3], we prove that an analogous characterization holds for the multidimensional $\varphi$-modulus of smoothness.},
author = {Angeloni, Laura},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {79-108},
publisher = {Unione Matematica Italiana},
title = {A Characterization of a Modulus of Smoothness in Multidimensional Setting},
url = {http://eudml.org/doc/290753},
volume = {4},
year = {2011},
}
TY - JOUR
AU - Angeloni, Laura
TI - A Characterization of a Modulus of Smoothness in Multidimensional Setting
JO - Bollettino dell'Unione Matematica Italiana
DA - 2011/2//
PB - Unione Matematica Italiana
VL - 4
IS - 1
SP - 79
EP - 108
AB - A classical result of approximation theory states that $\lim_{\delta \to 0} \omega(f, \delta) = 0$, where $\omega$ is the modulus of smoothness of $f$ defined by means of the variation functional, if and only if $f$ is absolutely continuous. Such theorem is crucial in order to obtain results about convergence and order of approximation for linear and non-linear integral operators in BV-spaces. It was an open problem to extend the above result to the setting of $\varphi$-variation in the multidimensional frame. In this paper, working with a concept of multidimensional W-variation introduced in [3], we prove that an analogous characterization holds for the multidimensional $\varphi$-modulus of smoothness.
LA - eng
UR - http://eudml.org/doc/290753
ER -
References
top- ANGELONI, L. - VINTI, G., Convergence in Variation and Rate of Approximation for Nonlinear Integral Operators of Convolution Type, Results Math., 49 (1-2) (2006), 1-23. Erratum: 57 (2010), 387-391. Zbl1110.41006MR2651122DOI10.1007/s00025-010-0019-3
- ANGELONI, L. - VINTI, G., Approximation by means of nonlinear integral operators in the space of functions with bounded -variation, Differential Integral Equations, 20 (3) (2007), 339-360. Erratum: 23 (7-8) (2010), 795-799. Zbl1212.26016MR2654270
- ANGELONI, L. - VINTI, G., Convergence and rate of approximation for linear integral operators in -spacces in multidimensional setting, Journal of Mathematical Analysis and Applications, 349 (2009), 317-334. Zbl1154.26017MR2456191DOI10.1016/j.jmaa.2008.08.029
- ANGELONI, L. - VINTI, G., Approximation with respect to Goffman-Serrin variation by means of non-convolution type integral operators, Numerical Functional Analysis and Optimization, 31 (2010), 519-548. Zbl1200.41015MR2682828DOI10.1080/01630563.2010.490549
- BARDARO, C., Alcuni teoremi di convergenza per l'integrale multiplo del Calcolo delle Variazioni, Atti Sem. Mat. Fis. Univ. Modena, 31 (1982), 302-324.
- BARDARO, C. - BUTZER, P. L. - STENS, R. L. - VINTI, G., Convergence in variation and rates of approximation for Bernstein-type polynomials and singular convolution integrals, Analysis, 23 (2003), 299-340. Zbl1049.41015MR2052372DOI10.1524/anly.2003.23.4.299
- BARDARO, C. - MUSIELAK, J. - VINTI, G., Nonlinear Integral Operators and Applications, De Gruyter Series in Nonlinear Analysis and Applications (New York, Berlin, 9, 2003). MR1994699DOI10.1515/9783110199277
- BARDARO, C. - SCIAMANNINI, S. - VINTI, G., Convergence in by nonlinear Mellin-Type convolution operators, Funct. Approx. Comment. Math., 29 (2001), 17-28. Zbl1075.41013MR2135595
- BARDARO, C. - VINTI, G., On convergence of moment operators with respect to -variation, Appl. Anal. (1991), 247-256. Zbl0702.42009MR1103861DOI10.1080/00036819108840029
- BARDARO, C. - VINTI, G., On the order of -approximation of convolution integrals over the line group, Comment. Math., Tomus Specialis in Honorem Iuliani Musielak (2004), 47-63. Zbl1068.47034MR2111754
- BURKILL, J. C., Functions of intervals, Proc. London Math. Soc., 22 (1923), 275-310. Zbl49.0177.02MR1575708DOI10.1112/plms/s2-22.1.275
- BUTZER, P. L. - NESSEL, R. J., Fourier Analysis and Approximation, I, Academic Press (New York-London, 1971). Zbl0217.42603MR510857
- CESARI, L., Sulle funzioni a variazione limitata, Ann. Scuola Norm. Sup. Pisa, 5 (1936), 299-313. Zbl62.0247.03MR1556778
- CHISTYAKOV, V. V. - GALKIN, O. E., Mappings of Bounded -Variation with Arbitrary Function , J. Dynam. Control Systems, 4 (2) (1998), 217-247. Zbl0940.26010MR1626529DOI10.1023/A:1022889902536
- DE GIORGI, E., Su una teoria generale della misura (r-1)-dimensionale in uno spazio ad r dimensioni, Ann. Mat. Pura Appl., 36 (4) (1954), 191-213. Zbl0055.28504MR62214DOI10.1007/BF02412838
- GIUSTI, E., Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, vol. 80, Birkhäuser Verlag, Basel, 1984. Zbl0545.49018MR775682DOI10.1007/978-1-4684-9486-0
- HERDA, H. H., Modular spaces of generalized variation, Studia Math., 30 (1968), 21-42. Zbl0159.18103MR231187DOI10.4064/sm-30-1-21-42
- JORDAN, C., Sur la serie de Fourier, C. R. Acad. Sci. Paris, 92 (1881), 228-230.
- LOVE, E. R. - YOUNG, L. C., Sur une classe de fonctionnelles linéaires, Fund. Math., 28 (1937), 243-257.
- MALIGRANDA, L. - ORLICZ, W., On some properties of functions of generalized variation, Mh. Math., 104 (1987), 53-65. Zbl0623.26009MR903775DOI10.1007/BF01540525
- MANTELLINI, I. - VINTI, G., -variation and nonlinear integral operators, Atti Sem. Mat. Fis. Univ. Modena, Suppl. Vol. 46, a special issue of the International Conference in Honour of Prof. Calogero Vinti (1998), 847-862. MR1645758
- MATUSZEWSKA, W. - ORLICZ, W., On Property B1 for Functions of Bounded -Variation, Bull. Polish Acad. Sci. Math., 35 (1-2) (1987), 57-69. MR894138
- MUSIELAK, J., Orlicz Spaces and Modular Spaces, Springer-Verlag, Lecture Notes in Math., 1034, 1983. Zbl0557.46020MR724434DOI10.1007/BFb0072210
- MUSIELAK, J., Nonlinear approximation in some modular function spaces I, Math. Japon., 38 (1993), 83-90. Zbl0779.46017MR1204187
- MUSIELAK, J. - ORLICZ, W., On generalized variations (I), Studia Math., 18 (1959), 11-41. Zbl0088.26901MR104771DOI10.4064/sm-18-1-11-41
- RAMAZANOV, A. R. K., On approximation of functions in terms of -variation, Anal. Math., 20 (1994), 263-281. Zbl0821.41009MR1301164DOI10.1007/BF01904057
- RAO, M. M. - REN, Z. D., Theory of Orlicz Spaces, Monograph Textbooks Pure Appl. Math., Marcel Dekker Inc. (New York, 1991). MR1113700
- SCIAMANNINI, S. - VINTI, G., Convergence and rate of approximation in for a class of integral operators, Approx. Theory Appl., 17 (2001), 17-35. Zbl1075.41013MR1910706DOI10.1023/A:1022811632587
- SCIAMANNINI, S. - VINTI, G., Convergence results in for a class of nonlinear Volterra-Hammerstein integral operators and applications, J. Concrete Appl. Anal., 1 (4) (2003), 287-306. Zbl1078.47026MR2132911
- SZELMECZKA, J., On convergence of singular integrals in the generalized variation metric, Funct. Approx. Comment. Math., 15 (1986), 53-58. Zbl0613.42014MR880134
- TONELLI, L., Su alcuni concetti dell'analisi moderna, Ann. Scuola Norm. Super. Pisa, 11 (2) (1942), 107-118. MR15463
- VINTI, C., Perimetro-variazione, Ann. Scuola Norm. Sup. Pisa, 18 (3) (1964), 201-231. MR168726
- VINTI, C., L'integrale di Fubini-Tonelli nel senso di Weierstrass, I - Caso parametrico, Ann. Scuola Norm. Sup. Pisa, 22 (1968), 229-263. MR231254
- WIENER, N., The quadratic variation of a function and its Fourier coefficients, Massachusetts J. of Math., 3 (1924), 72-94. Zbl50.0203.01
- YOUNG, L. C., An inequality of the Hölder type, connected with Stieltjes integration, Acta Math., 67 (1936), 251-282. MR1555421DOI10.1007/BF02401743
- YOUNG, L. C., Sur une généralisation de la notion de variation de puissance pieme bornée au sens de M. Wiener, et sur la convergence des séries de Fourier, C. R. Acad. Sci. Paris, 204 (1937), 470-472. Zbl63.0182.03
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.