The constructions of general connections on the fibred product of q copies of the first jet prolongation

Mariusz Plaszczyk

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2018)

  • Volume: 72, Issue: 1
  • ISSN: 0365-1029

Abstract

top
We describe all natural operators A transforming general connections Γ on fibred manifolds Y M and torsion-free classical linear connections Λ on M into general connections A ( Γ , Λ ) on the fibred product J Y M of q copies of the first jet prolongation J 1 Y M .

How to cite

top

Mariusz Plaszczyk. "The constructions of general connections on the fibred product of q copies of the first jet prolongation." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 72.1 (2018): null. <http://eudml.org/doc/290764>.

@article{MariuszPlaszczyk2018,
abstract = {We describe all natural operators $A$ transforming general connections $\Gamma $ on fibred manifolds $Y \rightarrow M$ and torsion-free classical linear connections $\Lambda $ on $M$ into general connections $A(\Gamma ,\Lambda )$ on the fibred product $J^\{\}Y \rightarrow M$ of $q$ copies of the first jet prolongation $J^\{1\}Y \rightarrow M$.},
author = {Mariusz Plaszczyk},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {General connection; classical linear connection; first jet prolongation; bundle functor; natural operator},
language = {eng},
number = {1},
pages = {null},
title = {The constructions of general connections on the fibred product of q copies of the first jet prolongation},
url = {http://eudml.org/doc/290764},
volume = {72},
year = {2018},
}

TY - JOUR
AU - Mariusz Plaszczyk
TI - The constructions of general connections on the fibred product of q copies of the first jet prolongation
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2018
VL - 72
IS - 1
SP - null
AB - We describe all natural operators $A$ transforming general connections $\Gamma $ on fibred manifolds $Y \rightarrow M$ and torsion-free classical linear connections $\Lambda $ on $M$ into general connections $A(\Gamma ,\Lambda )$ on the fibred product $J^{}Y \rightarrow M$ of $q$ copies of the first jet prolongation $J^{1}Y \rightarrow M$.
LA - eng
KW - General connection; classical linear connection; first jet prolongation; bundle functor; natural operator
UR - http://eudml.org/doc/290764
ER -

References

top
  1. Doupovec, M., Mikulski, W. M., Holonomic extension of connections and symmetrization of jets, Rep. Math. Phys. 60 (2007), 299-316. 
  2. Kolar, I., Prolongations of generalized connections, in: Differential Geometry (Budapest,1979), Colloq. Math. Soc. Janos Bolyai, 31, North-Holland, Amsterdam, 1982, 317-325. 
  3. Kolar, I., Higher order absolute differentiation with respect to generalized connections, in: Differential Geometry (Warsaw, 1979), PWN – Polish Sci. Publ., Warszawa, 1984, 153-162. 
  4. Kolar, I., Michor, P. W., Slovak J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993. 
  5. Kurek, J., Mikulski, W. M., On prolongations of projectable connections, Ann. Polon. Math. 101 (3) (2011), 237-250. 
  6. Mikulski, W. M., On “special” fibred coordinates for general and classical connections, Ann. Polon. Math. 99 (2010), 99-105. 
  7. Mikulski, W. M., On prolongation of connections, Ann. Polon. Math. 97 (2) (2010), 101-121. 
  8. Plaszczyk, M., The constructions of general connections on second jet prolongation, Ann. Univ. Mariae Curie-Skłodowska Sect. A 68 (1) (2014), 67-89. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.