Central Limit Theorem with Exchangeable Summands and Mixtures of Stable Laws as Limits
Sandra Fortini; Lucia Ladelli; Eugenio Regazzini
Bollettino dell'Unione Matematica Italiana (2012)
- Volume: 5, Issue: 3, page 515-542
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topReferences
top- BASSETTI, F. - LADELLI, L. - REGAZZINI, E., Probabilistic study of the speed of approach to equilibrium for an inelastic Kac model. J. Statist. Phys., 133 (2008), 683-710. Zbl1161.82337MR2456941DOI10.1007/s10955-008-9630-z
- BILLINGLEY, P., Convergence of Probability Measures, 2nd. ed. Wiley, New York (1999). MR1700749DOI10.1002/9780470316962
- BLUM, J. R. - CHERNOFF, H. - ROSENBLATT, M. - TEICHER, H., Central limit theorems for interchangeable processes. Canad. J. Math., 10 (1958), 222-229. Zbl0081.35203MR96298DOI10.4153/CJM-1958-026-0
- CHOW, Y. S. - TEICHER, H., Probability Theory. Independence, Interchangeability, Martingales, 3rd ed. Springer-Verlag, New York (1997). MR1476912DOI10.1007/978-1-4612-1950-7
- DALEY, D. J. - VERE-JONES, D., An Introduction to the Theory of Point Processes. Elementary Theory and Methods, 2nd ed. 1Springer-Verlag, New York (2003). Zbl1026.60061MR950166
- DIACONIS, P. - HOLMES, S., A Bayesian peek into Feller volume I. Sankhyā Ser. A, 64 (2002), 820-841. Zbl1192.60003MR1981513
- DOLERA, E. - REGAZZINI, E., Proof of a McKean conjecture on the rate of convergence of Boltzmann-equation solutions. arXiv: 1206.5147 v1. Zbl1319.60041MR3256816DOI10.1007/s00440-013-0530-z
- DUDLEY, R. M., Real Analysis and Probability. Cambridge Univ. Press, Cambridge (2002). Zbl1023.60001MR1932358DOI10.1017/CBO9780511755347
- FORTINI, S. - LADELLI, L. - REGAZZINI, E., A central limit problem for partially exchangeable random variables. Theory Probab. Appl., 41 (1996), 224-246. Zbl0881.60019MR1445757DOI10.1137/S0040585X97975459
- FRISTEDT, B. - GRAY, L., A Modern Approach to Probability Theory. Birkhäuser, Boston (1997). Zbl0869.60001MR1422917DOI10.1007/978-1-4899-2837-5
- GABETTA, E. - REGAZZINI, E., Central limit theorem for the solution of the Kac equation. Ann. Appl. Probab., 18 (2006), 2320-2336. Zbl1161.82018MR2474538DOI10.1214/08-AAP524
- GABETTA, E. - REGAZZINI, E., Complete characterization of convergence to equilibrium for an inelastic Kac model. J. Statist. Phys., 147 (2012), 1007-1019. Zbl1254.82034MR2946634DOI10.1007/s10955-012-0505-y
- GALAMBOS, J., Advanced Probability Theory. 2nd ed. Marcel Dekker Inc., New York (1995). Zbl0841.60001MR1350792
- IBRAGIMOV, I. A. - LINNIK, Y. V., Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff Publishing, Groningen (1971). Zbl0219.60027MR322926
- JIANG, X. - HAHN, M. G., Central limit theorems for exchangeable random variables when limits are scale mixtures of Normals. J. Theoret. Probab., 16 (2003), 543-570. Zbl1027.60019MR2009193DOI10.1023/A:1025612330587
- JIANG, X. - HAHN, M. G., Erratum to: Central limit theorems for exchangeable random variables when limits are scale mixtures of normals. J. Theoret. Probab., 25 (2012), 310-311. Zbl1237.60019MR2886390DOI10.1007/s10959-012-0405-8
- KALLENBERG, O., Probabilistic Symmetries and Invariance Principles. Springer-Verlag, New York (2005). Zbl1084.60003MR2161313
- LOÈVE, M., Probability Theory, 4th ed. 1Springer-Verlag, New York (1977). MR513230
- REGAZZINI, E. - SAZONOV, V. V., On the central limit problem for partially exchangeable random variables with values in a Hilbert space. Theory Probab. Appl., 42 (1997), 796-812. Zbl0912.60045MR1618750DOI10.1137/S0040585X97976520
- REGAZZINI, E., Convergence to equilibrium of the solution of Kac's kinetic equation. A probabilistic view. Boll. Unione Mat. Ital. (9), 2 (2009), 175-198. Zbl1177.82093MR2493650
- STOICA, G., An extension of the weak law of large numbers for exchangeable sequences. Acta Appl. Math., 109 (2010), 759-763. Zbl1193.60029MR2596173DOI10.1007/s10440-008-9344-x