On the inverse problem of the calculus of variations for ordinary differential equations

Olga Krupková

Mathematica Bohemica (1993)

  • Volume: 118, Issue: 3, page 261-276
  • ISSN: 0862-7959

Abstract

top
Lepagean 2-form as a globally defined, closed counterpart of higher-order variational equations on fibered manifolds over one-dimensional bases is introduced, and elementary proofs of the basic theorems concerning the inverse problem of the calculus of variations, based on the notion of Lepagean 2-form and its properties, are given.

How to cite

top

Krupková, Olga. "On the inverse problem of the calculus of variations for ordinary differential equations." Mathematica Bohemica 118.3 (1993): 261-276. <http://eudml.org/doc/29086>.

@article{Krupková1993,
abstract = {Lepagean 2-form as a globally defined, closed counterpart of higher-order variational equations on fibered manifolds over one-dimensional bases is introduced, and elementary proofs of the basic theorems concerning the inverse problem of the calculus of variations, based on the notion of Lepagean 2-form and its properties, are given.},
author = {Krupková, Olga},
journal = {Mathematica Bohemica},
keywords = {Lepagean forms; variational equations; Helmholtz conditions; minimal- order Lagrangian; local inverse problem to the calculus of variations; global inverse problem to the calculus of variations; Lepagean forms; variational equations; Helmholtz conditions; minimal- order Lagrangian},
language = {eng},
number = {3},
pages = {261-276},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the inverse problem of the calculus of variations for ordinary differential equations},
url = {http://eudml.org/doc/29086},
volume = {118},
year = {1993},
}

TY - JOUR
AU - Krupková, Olga
TI - On the inverse problem of the calculus of variations for ordinary differential equations
JO - Mathematica Bohemica
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 118
IS - 3
SP - 261
EP - 276
AB - Lepagean 2-form as a globally defined, closed counterpart of higher-order variational equations on fibered manifolds over one-dimensional bases is introduced, and elementary proofs of the basic theorems concerning the inverse problem of the calculus of variations, based on the notion of Lepagean 2-form and its properties, are given.
LA - eng
KW - Lepagean forms; variational equations; Helmholtz conditions; minimal- order Lagrangian; local inverse problem to the calculus of variations; global inverse problem to the calculus of variations; Lepagean forms; variational equations; Helmholtz conditions; minimal- order Lagrangian
UR - http://eudml.org/doc/29086
ER -

References

top
  1. I. M. Anderson, The variational bicomplex, Preprint, Department of Mathematics, Utah State University, Logan, Utah, 1989, pp. 289. (1989) MR1188434
  2. I. M. Anderson аnd T. Duchаmp, 10.2307/2374195, Am. J. Math. 102 (1980), 781-868. (1980) MR0590637DOI10.2307/2374195
  3. D. Dedecker аnd W.M. Tulczyjew, Spectгal sequences and the inverse problem of the calculus of variations, Internat. Coll. on Diff. Geom. Methods in Math. Physics, Aix-en-Provence Sept. 1989, in: Lectuгe Notes in Math. vol. 836, Springer, Berlin, 1980. (1989) 
  4. H. Helmholtz, Über die Physikalische Bedeutung des Prinzips der kleinsten Wirkung, J. für die reine u. angewandte Math. 100 (1987), 137-166. (1987) 
  5. L. Klаpkа, Euler-Lagrange expressions and closed two-foгms in higher order mechanics, in: Geometrical Methods in Physics, Pгoc. Conf. on Diff. Geom. and its Appl., Nové Mӗsto na Moravӗ, Czechoslovakia, 1983 (D. Ҟrupka, ed.), J.E. Purkynӗ Univ., Brno, Czechoslovakia, 1984, pp. 149-153. (1983) MR0793205
  6. D. Krupkа, Some geometric aspects of variational problems in fìbeгed manifolds, Folia Fac. Sci. Nat. UJEP Brunensis 14 (1973), 1-65. (1973) 
  7. D. Krupkа, On the local structure of the Euler-Lagrange mapping of the calculus of variations, in: Proc. Conf. on Diff. Geom. and Its Appl. 1980 (O. Kowalski, ed.), Universita Karlova, Prague, 1981, pp. 181-188. (1980) MR0663224
  8. D. Krupkа, Lepagean forms in higher order variational theory, in: Modern Developments in Analytical Mechanics I: Geometrical Dynamics, Pгoc. IUTAM-ISIMM Symposium, Torino, Italy, 1982 (S. Benenti, M. Francaviglia and A. Lichnerowicz, eds.), Accad. delle Scienze di Torino, Torino, 1983, pp. 197-238. (1982) MR0773488
  9. D. Krupkа, Geometry of lagrangean structuгes 2., Arch. Math. (Bгno) 22 (1986), 211-228. (1986) MR0868536
  10. D. Krupkа, Geometry of lagrangean structures 3., Proc. Winter School of Abstгact Analysis, Sгní, Czechoslovakia, 1986, Suppl. ai Rend. del Circ. Mat. di Palermo, vol. 14, 1987, pp. 187-224. (1986) MR0920855
  11. D. Krupka, Variational sequences on fìnite order jet spaces, in: Diffeгential Geometry and Its Applications, Proc. Conf., Brno, Czechoslovakia, 1989 (J. Janyška and D. Krupka, eds.), Woгld Scientific, Singapore, 1990, pp. 236-254. (1989) MR1062026
  12. O. Krupková, Lepagean 2-forms in higher order Hamiltonian mechanics, I. Regularity, Arch. Math. (Brno) 22 (1986), 97-120. (1986) MR0868124
  13. R. Macjuk, On the existence of a lagrangian for a system of ordinary diffeгential equations, Mat. metody fiz.-mech. polja 13 (1981), 30-34. (In Russian.) (1981) 
  14. A. Mayer, Die Бxistenzbedingungen eines kinetischen Potentiales, Ber. Ver. Ges. d. Wiss. Leipzig, Math.-Phys. Cl. 48 (1896), 519-529. 
  15. Ғ. Takens, 10.4310/jdg/1214435235, J. Diff. Geom. 14 (1979), 543-562. (1979) MR0600611DOI10.4310/jdg/1214435235
  16. E. Tonti, Variational formulation of nonlinear differential equatюns I, II, Bull. Acad. Roy. Belg. Cl. Sci. 55 (1969), 137-165, 262-278. (1969) 
  17. W M. Tulczyjew, Sur la différentielle de Lagrange, C. R. Acad. Sci. Paгis A 280 (1975), 1295-1298. (1975) Zbl0314.58018MR0377987
  18. M. M. Veiberg, Variational Methods in the Theory of Non-Linear Operators, GITL, Moscow, 1959. (In Russian.) (1959) 
  19. A. L. Vanderbauwhede, Potential operators and variational principles, Hadronic J. 2 (1979), 620-641. (1979) Zbl0431.47032MR0537234
  20. A. M. Vinogradov, A spectral sequence associated with a non-linear differential equation, and algebro-geometric foundations of Lagrangian field theory, Soviet Math. Dokl. 19 (1978), 144-148. (1978) 
  21. A. M. Vinogradov, 10.1016/0022-247X(84)90071-4, J. Math. Anal. Appl. 100 (1984), 1-40, 41-129. (1984) MR0739951DOI10.1016/0022-247X(84)90071-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.