On the inverse problem of the calculus of variations for ordinary differential equations
Mathematica Bohemica (1993)
- Volume: 118, Issue: 3, page 261-276
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topKrupková, Olga. "On the inverse problem of the calculus of variations for ordinary differential equations." Mathematica Bohemica 118.3 (1993): 261-276. <http://eudml.org/doc/29086>.
@article{Krupková1993,
abstract = {Lepagean 2-form as a globally defined, closed counterpart of higher-order variational equations on fibered manifolds over one-dimensional bases is introduced, and elementary proofs of the basic theorems concerning the inverse problem of the calculus of variations, based on the notion of Lepagean 2-form and its properties, are given.},
author = {Krupková, Olga},
journal = {Mathematica Bohemica},
keywords = {Lepagean forms; variational equations; Helmholtz conditions; minimal- order Lagrangian; local inverse problem to the calculus of variations; global inverse problem to the calculus of variations; Lepagean forms; variational equations; Helmholtz conditions; minimal- order Lagrangian},
language = {eng},
number = {3},
pages = {261-276},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the inverse problem of the calculus of variations for ordinary differential equations},
url = {http://eudml.org/doc/29086},
volume = {118},
year = {1993},
}
TY - JOUR
AU - Krupková, Olga
TI - On the inverse problem of the calculus of variations for ordinary differential equations
JO - Mathematica Bohemica
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 118
IS - 3
SP - 261
EP - 276
AB - Lepagean 2-form as a globally defined, closed counterpart of higher-order variational equations on fibered manifolds over one-dimensional bases is introduced, and elementary proofs of the basic theorems concerning the inverse problem of the calculus of variations, based on the notion of Lepagean 2-form and its properties, are given.
LA - eng
KW - Lepagean forms; variational equations; Helmholtz conditions; minimal- order Lagrangian; local inverse problem to the calculus of variations; global inverse problem to the calculus of variations; Lepagean forms; variational equations; Helmholtz conditions; minimal- order Lagrangian
UR - http://eudml.org/doc/29086
ER -
References
top- I. M. Anderson, The variational bicomplex, Preprint, Department of Mathematics, Utah State University, Logan, Utah, 1989, pp. 289. (1989) MR1188434
- I. M. Anderson аnd T. Duchаmp, 10.2307/2374195, Am. J. Math. 102 (1980), 781-868. (1980) MR0590637DOI10.2307/2374195
- D. Dedecker аnd W.M. Tulczyjew, Spectгal sequences and the inverse problem of the calculus of variations, Internat. Coll. on Diff. Geom. Methods in Math. Physics, Aix-en-Provence Sept. 1989, in: Lectuгe Notes in Math. vol. 836, Springer, Berlin, 1980. (1989)
- H. Helmholtz, Über die Physikalische Bedeutung des Prinzips der kleinsten Wirkung, J. für die reine u. angewandte Math. 100 (1987), 137-166. (1987)
- L. Klаpkа, Euler-Lagrange expressions and closed two-foгms in higher order mechanics, in: Geometrical Methods in Physics, Pгoc. Conf. on Diff. Geom. and its Appl., Nové Mӗsto na Moravӗ, Czechoslovakia, 1983 (D. Ҟrupka, ed.), J.E. Purkynӗ Univ., Brno, Czechoslovakia, 1984, pp. 149-153. (1983) MR0793205
- D. Krupkа, Some geometric aspects of variational problems in fìbeгed manifolds, Folia Fac. Sci. Nat. UJEP Brunensis 14 (1973), 1-65. (1973)
- D. Krupkа, On the local structure of the Euler-Lagrange mapping of the calculus of variations, in: Proc. Conf. on Diff. Geom. and Its Appl. 1980 (O. Kowalski, ed.), Universita Karlova, Prague, 1981, pp. 181-188. (1980) MR0663224
- D. Krupkа, Lepagean forms in higher order variational theory, in: Modern Developments in Analytical Mechanics I: Geometrical Dynamics, Pгoc. IUTAM-ISIMM Symposium, Torino, Italy, 1982 (S. Benenti, M. Francaviglia and A. Lichnerowicz, eds.), Accad. delle Scienze di Torino, Torino, 1983, pp. 197-238. (1982) MR0773488
- D. Krupkа, Geometry of lagrangean structuгes 2., Arch. Math. (Bгno) 22 (1986), 211-228. (1986) MR0868536
- D. Krupkа, Geometry of lagrangean structures 3., Proc. Winter School of Abstгact Analysis, Sгní, Czechoslovakia, 1986, Suppl. ai Rend. del Circ. Mat. di Palermo, vol. 14, 1987, pp. 187-224. (1986) MR0920855
- D. Krupka, Variational sequences on fìnite order jet spaces, in: Diffeгential Geometry and Its Applications, Proc. Conf., Brno, Czechoslovakia, 1989 (J. Janyška and D. Krupka, eds.), Woгld Scientific, Singapore, 1990, pp. 236-254. (1989) MR1062026
- O. Krupková, Lepagean 2-forms in higher order Hamiltonian mechanics, I. Regularity, Arch. Math. (Brno) 22 (1986), 97-120. (1986) MR0868124
- R. Macjuk, On the existence of a lagrangian for a system of ordinary diffeгential equations, Mat. metody fiz.-mech. polja 13 (1981), 30-34. (In Russian.) (1981)
- A. Mayer, Die Бxistenzbedingungen eines kinetischen Potentiales, Ber. Ver. Ges. d. Wiss. Leipzig, Math.-Phys. Cl. 48 (1896), 519-529.
- Ғ. Takens, 10.4310/jdg/1214435235, J. Diff. Geom. 14 (1979), 543-562. (1979) MR0600611DOI10.4310/jdg/1214435235
- E. Tonti, Variational formulation of nonlinear differential equatюns I, II, Bull. Acad. Roy. Belg. Cl. Sci. 55 (1969), 137-165, 262-278. (1969)
- W M. Tulczyjew, Sur la différentielle de Lagrange, C. R. Acad. Sci. Paгis A 280 (1975), 1295-1298. (1975) Zbl0314.58018MR0377987
- M. M. Veiberg, Variational Methods in the Theory of Non-Linear Operators, GITL, Moscow, 1959. (In Russian.) (1959)
- A. L. Vanderbauwhede, Potential operators and variational principles, Hadronic J. 2 (1979), 620-641. (1979) Zbl0431.47032MR0537234
- A. M. Vinogradov, A spectral sequence associated with a non-linear differential equation, and algebro-geometric foundations of Lagrangian field theory, Soviet Math. Dokl. 19 (1978), 144-148. (1978)
- A. M. Vinogradov, 10.1016/0022-247X(84)90071-4, J. Math. Anal. Appl. 100 (1984), 1-40, 41-129. (1984) MR0739951DOI10.1016/0022-247X(84)90071-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.