Page 1 Next

Displaying 1 – 20 of 32

Showing per page

An analysis of electrical impedance tomography with applications to Tikhonov regularization

Bangti Jin, Peter Maass (2012)

ESAIM: Control, Optimisation and Calculus of Variations

This paper analyzes the continuum model/complete electrode model in the electrical impedance tomography inverse problem of determining the conductivity parameter from boundary measurements. The continuity and differentiability of the forward operator with respect to the conductivity parameter in Lp-norms are proved. These analytical results are applied to several popular regularization formulations, which incorporate a priori information of smoothness/sparsity on the inhomogeneity through Tikhonov...

Conformal mapping and inverse conductivity problem with one measurement

Marc Dambrine, Djalil Kateb (2007)

ESAIM: Control, Optimisation and Calculus of Variations

This work deals with a two-dimensional inverse problem in the field of tomography. The geometry of an unknown inclusion has to be reconstructed from boundary measurements. In this paper, we extend previous results of R. Kress and his coauthors: the leading idea is to use the conformal mapping function as unknown. We establish an integrodifferential equation that the trace of the Riemann map solves. We write it as a fixed point equation and give conditions for contraction. We conclude with a series...

Convergence and regularization results for optimal control problems with sparsity functional

Gerd Wachsmuth, Daniel Wachsmuth (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Optimization problems with convex but non-smooth cost functional subject to an elliptic partial differential equation are considered. The non-smoothness arises from a L1-norm in the objective functional. The problem is regularized to permit the use of the semi-smooth Newton method. Error estimates with respect to the regularization parameter are provided. Moreover, finite element approximations are studied. A-priori as well as a-posteriori error estimates are developed and confirmed by numerical...

Convergence and regularization results for optimal control problems with sparsity functional

Gerd Wachsmuth, Daniel Wachsmuth (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Optimization problems with convex but non-smooth cost functional subject to an elliptic partial differential equation are considered. The non-smoothness arises from a L1-norm in the objective functional. The problem is regularized to permit the use of the semi-smooth Newton method. Error estimates with respect to the regularization parameter are provided. Moreover, finite element approximations are studied. A-priori as well as a-posteriori error estimates are developed and confirmed by numerical...

Examples from the calculus of variations. I. Nondegenerate problems

Jan Chrastina (2000)

Mathematica Bohemica

The criteria of extremality for classical variational integrals depending on several functions of one independent variable and their derivatives of arbitrary orders for constrained, isoperimetrical, degenerate, degenerate constrained, and so on, cases are investigated by means of adapted Poincare-Cartan forms. Without ambitions on a noble generalizing theory, the main part of the article consists of simple illustrative examples within a somewhat naive point of view in order to obtain results resembling...

Inverse coefficient problems for variational inequalities : optimality conditions and numerical realization

Michael Hintermüller (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the identification of a distributed parameter in an elliptic variational inequality. On the basis of an optimal control problem formulation, the application of a primal-dual penalization technique enables us to prove the existence of multipliers giving a first order characterization of the optimal solution. Concerning the parameter we consider different regularity requirements. For the numerical realization we utilize a complementarity function, which allows us to rewrite the optimality...

Inverse Coefficient Problems for Variational Inequalities: Optimality Conditions and Numerical Realization

Michael Hintermüller (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the identification of a distributed parameter in an elliptic variational inequality. On the basis of an optimal control problem formulation, the application of a primal-dual penalization technique enables us to prove the existence of multipliers giving a first order characterization of the optimal solution. Concerning the parameter we consider different regularity requirements. For the numerical realization we utilize a complementarity function, which allows us to rewrite the optimality...

On some optimal control problems for the heat radiative transfer equation

Sandro Manservisi, Knut Heusermann (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is concerned with some optimal control problems for the Stefan-Boltzmann radiative transfer equation. The objective of the optimisation is to obtain a desired temperature profile on part of the domain by controlling the source or the shape of the domain. We present two problems with the same objective functional: an optimal control problem for the intensity and the position of the heat sources and an optimal shape design problem where the top surface is sought as control. The problems...

On the inverse problem of the calculus of variations for ordinary differential equations

Olga Krupková (1993)

Mathematica Bohemica

Lepagean 2-form as a globally defined, closed counterpart of higher-order variational equations on fibered manifolds over one-dimensional bases is introduced, and elementary proofs of the basic theorems concerning the inverse problem of the calculus of variations, based on the notion of Lepagean 2-form and its properties, are given.

On the inverse variational problem in nonholonomic mechanics

Olga Rossi, Jana Musilová (2012)

Communications in Mathematics

The inverse problem of the calculus of variations in a nonholonomic setting is studied. The concept of constraint variationality is introduced on the basis of a recently discovered nonholonomic variational principle. Variational properties of first order mechanical systems with general nonholonomic constraints are studied. It is shown that constraint variationality is equivalent with the existence of a closed representative in the class of 2-forms determining the nonholonomic system. Together with...

On the projective Finsler metrizability and the integrability of Rapcsák equation

Tamás Milkovszki, Zoltán Muzsnay (2017)

Czechoslovak Mathematical Journal

A. Rapcsák obtained necessary and sufficient conditions for the projective Finsler metrizability in terms of a second order partial differential system. In this paper we investigate the integrability of the Rapcsák system and the extended Rapcsák system, by using the Spencer version of the Cartan-Kähler theorem. We also consider the extended Rapcsák system completed with the curvature condition. We prove that in the non-isotropic case there is a nontrivial Spencer cohomology group in the sequences...

On the solution of inverse problems for generalized oxygen consumption

Denis Constales, Jozef Kačur (2001)

Applications of Mathematics

We present the solution of some inverse problems for one-dimensional free boundary problems of oxygen consumption type, with a semilinear convection-diffusion-reaction parabolic equation. Using a fixed domain transformation (Landau’s transformation) the direct problem is reduced to a system of ODEs. To minimize the objective functionals in the inverse problems, we approximate the data by a finite number of parameters with respect to which automatic differentiation is applied.

Currently displaying 1 – 20 of 32

Page 1 Next