The Immersed Boundary Method for Fluid-Structure Interactions: Mathematical Formulation and Numerical

Daniele Boffi

Bollettino dell'Unione Matematica Italiana (2012)

  • Volume: 5, Issue: 3, page 711-724
  • ISSN: 0392-4041

Abstract

top
The Immersed Boundary Method (IBM) has been introduced by Peskin in the 70's in order to model and approximate fluid-structure interaction problems related to the blood flow in the heart. The original scheme makes use of finite differences for the discretization of the Navier-Stokes equations. Recently, a finite element formulation has been introduced which has the advantage of handling the presence of the solid (modeled via a Dirac delta function) in a more natural way. In this paper we review the finite element formulation of the IBM focusing, in particular, on the choice of the finite element spaces in order to guarantee a suitable mass conservation. Moreover, we present some links with the fictitious domain method.

How to cite

top

Boffi, Daniele. "The Immersed Boundary Method for Fluid-Structure Interactions: Mathematical Formulation and Numerical." Bollettino dell'Unione Matematica Italiana 5.3 (2012): 711-724. <http://eudml.org/doc/290882>.

@article{Boffi2012,
abstract = {The Immersed Boundary Method (IBM) has been introduced by Peskin in the 70's in order to model and approximate fluid-structure interaction problems related to the blood flow in the heart. The original scheme makes use of finite differences for the discretization of the Navier-Stokes equations. Recently, a finite element formulation has been introduced which has the advantage of handling the presence of the solid (modeled via a Dirac delta function) in a more natural way. In this paper we review the finite element formulation of the IBM focusing, in particular, on the choice of the finite element spaces in order to guarantee a suitable mass conservation. Moreover, we present some links with the fictitious domain method.},
author = {Boffi, Daniele},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {711-724},
publisher = {Unione Matematica Italiana},
title = {The Immersed Boundary Method for Fluid-Structure Interactions: Mathematical Formulation and Numerical},
url = {http://eudml.org/doc/290882},
volume = {5},
year = {2012},
}

TY - JOUR
AU - Boffi, Daniele
TI - The Immersed Boundary Method for Fluid-Structure Interactions: Mathematical Formulation and Numerical
JO - Bollettino dell'Unione Matematica Italiana
DA - 2012/10//
PB - Unione Matematica Italiana
VL - 5
IS - 3
SP - 711
EP - 724
AB - The Immersed Boundary Method (IBM) has been introduced by Peskin in the 70's in order to model and approximate fluid-structure interaction problems related to the blood flow in the heart. The original scheme makes use of finite differences for the discretization of the Navier-Stokes equations. Recently, a finite element formulation has been introduced which has the advantage of handling the presence of the solid (modeled via a Dirac delta function) in a more natural way. In this paper we review the finite element formulation of the IBM focusing, in particular, on the choice of the finite element spaces in order to guarantee a suitable mass conservation. Moreover, we present some links with the fictitious domain method.
LA - eng
UR - http://eudml.org/doc/290882
ER -

References

top
  1. BADIA, S. - NOBILE, F. - VERGARA, C., Fluid-structure partitioned procedures based on Robin transmission conditions, J. Comput. Phys., 227 (14) (2008), 7027-7051. Zbl1140.74010MR2435441DOI10.1016/j.jcp.2008.04.006
  2. BADIA, S. - QUAINI, A. - QUARTERONI, A., Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect, Comput. Methods Appl. Mech. Engrg., 197 (49-50) (2008), 4216-4232. Zbl1194.74058MR2463662DOI10.1016/j.cma.2008.04.018
  3. BADIA, S. - QUAINI, A. - QUARTERONI, A., Splitting methods based on algebraic factorization for fluid-structure interaction, SIAM J. Sci. Comput., 30 (4) (2008), 1778-1805. Zbl1368.74021MR2407141DOI10.1137/070680497
  4. BERCOVIER, M. - PIRONNEAU, O., Error estimates for finite element method solution of the Stokes problem in the primitive variables, Numer. Math., 33 (2) (1979), 211-224. Zbl0423.65058MR549450DOI10.1007/BF01399555
  5. BOFFI, D., Stability of higher order triangular Hood-Taylor methods for the stationary Stokes equations, Math. Models Methods Appl. Sci., 4 (2) (1994), 223-235. Zbl0804.76051MR1269482DOI10.1142/S0218202594000133
  6. BOFFI, D., Three-dimensional finite element methods for the Stokes problem, SIAM J. Numer. Anal., 34 (2) (1997), 664-670. Zbl0874.76032MR1442933DOI10.1137/S0036142994270193
  7. BOFFI, D. - CAVALLINI, N. - GARDINI, F. - GASTALDI, L., Local mass conservation of Stokes finite elements, To appear in J. Sci. Comput. (2011). Zbl1264.74259MR2948699DOI10.1007/s10915-011-9549-4
  8. BOFFI, D. - CAVALLINI, N. - GASTALDI, L., Finite element approach to immersed boundary method with different fluid and solid densities, To appear in Math. Models Methods Appl. Sci. (2011). Zbl1242.76190MR2864640DOI10.1142/S0218202511005829
  9. BOFFI, D. - CAVALLINI, N. - GASTALDI, L. - ZIKATANOV, L. T., In preparation. 
  10. BOFFI, D. - GASTALDI, L., In preparation. 
  11. BOFFI, D. - GASTALDI, L., A finite element approach for the immersed boundary method, Comput. & Structures, 81 (8-11) (2003), 491-501. In honor of Klaus-Jürgen Bathe. MR2001876DOI10.1016/S0045-7949(02)00404-2
  12. BOFFI, D. - GASTALDI, L. - HELTAI, L., Numerical stability of the finite element immersed boundary method, Math. Models Methods Appl. Sci., 17 (10) (2007), 1479-1505. Zbl1186.76661MR2359913DOI10.1142/S0218202507002352
  13. BOFFI, D. - GASTALDI, L. - HELTAI, L., On the CFL condition for the finite element immersed boundary method, Comput.85 (11-14) (2007), 775-783. MR2308727DOI10.1016/j.compstruc.2007.01.009
  14. BOFFI, D. - GASTALDI, L. - HELTAI, L. - PESKIN, CHARLES S., On the hyper-elastic formulation of the immersed boundary method, Comput. Methods Appl. Mech. Engrg., 197 (25-28) (2008), 2210-2231. Zbl1158.74523MR2412821DOI10.1016/j.cma.2007.09.015
  15. BRANDT, A. - LIVNE, E. O., Multigrid techniques: 1984 guide with applications to fluid dynamics, volume 67 of Classics in applied mathematics, SIAM, Philadelphia, 2011. Zbl1227.65121MR3396211DOI10.1137/1.9781611970753
  16. BREZZI, F. - FORTIN, M., Mixed and hybrid finite element methods, volume 15 of Springer Series in Computational Mathematics, Springer-Verlag, New York, 1991. Zbl0788.73002MR1115205DOI10.1007/978-1-4612-3172-1
  17. CAUSIN, P. - GERBEAU, J. F. - NOBILE, F., Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Comput. Methods Appl. Mech. Engrg., 194, (42-44) (2005), 4506-4527. Zbl1101.74027MR2157973DOI10.1016/j.cma.2004.12.005
  18. CHAPELLE, D. - BATHE, K.-J., The inf-sup test, Comput. & Structures, 47 (4-5) (1993), 537-545. Zbl0780.73074MR1224095DOI10.1016/0045-7949(93)90340-J
  19. DEPARIS, S. - FERNÁNDEZ, M. A. - FORMAGGIA, L., Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions, M2AN Math. Model. Numer. Anal., 37 (4) (2003), 601-616. Zbl1118.74315MR2018432DOI10.1051/m2an:2003050
  20. L. FORMAGGIA - A. QUARTERONI - A. VENEZIANI, editors, Cardiovascular mathematics, volume 1, of MS&A. Modeling, Simulation and Applications, Springer-Verlag Italia, Milan, 2009. Modeling and simulation of the circulatory system. Zbl1300.92005MR2488002DOI10.1007/88-470-0396-2_7
  21. GIRAULT, V. - GLOWINSKI, R. - PAN, T. W., A fictitious-domain method with distributed multiplier for the Stokes problem, In Applied nonlinear analysis, pages 159-174. Kluwer/Plenum, New York, 1999. Zbl0954.35127MR1727447
  22. GLOWINSKI, R. - PAN, T.-W. - PÉRIAUX, J., A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech. Engrg., 111 (3-4) (1994), 283-303. MR1259864DOI10.1016/0045-7825(94)90135-X
  23. GLOWINSKI, R. - PAN, T. W. - PÉRIAUX, J., Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies, Comput. Methods Appl. Mech. Engrg., 151 (1-2) (1998), 181-194. Symposium on Advances in Computational Mechanics, Vol. 3 (Austin, TX, 1997). Zbl0916.76052MR1625430DOI10.1016/S0045-7825(97)00116-3
  24. GLOWINSKI, R. - PÉRIAUX, J. - PAN, T.-W., Fictitious domain method for the Dirichlet problem and its generalization to some flow problems, In Finite elements in fluids, Part I, II (Barcelona, 1993), pages 347-368, Centro Internac. Métodos Numér. Ing., (Barcelona, 1993). Zbl0876.76060MR1292053
  25. GRESHO, P. M. - LEE, R. L. - CHAN, S. T. - LEONE, J. M., A new finite element for Boussinesq fluids. In Pro. Third Int. Conf. on Finite Elements in Flow Problems, pages 204-215. Wiley, New York, 1980. Zbl0447.76026
  26. GRIFFITHS, D. F., The effect of pressure approximation on finite element calculations of compressible flows. In Numerical Methods for Fluid Dynamics, pages 359-374. Academic Press, Morton, K. W. and Baines, M. J. edition, 1982. 
  27. GUIDOBONI, G. - GLOWINSKI, R. - CAVALLINI, N. - CANIC, S., Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow, J. Comput. Phys., 228 (18) (2009), 6916-6937. Zbl1261.76056MR2567876DOI10.1016/j.jcp.2009.06.007
  28. HELTAI, L., On the Stability of the Finite Element Immersed Boundary Method, Comput. & Structures, 86 (7-8) (2008), 598-617. 
  29. LE TALLEC, P. - MOURO, J., Fluid structure interaction with large structural displacements, Comput. Methods Appl. Mech. Engrg., 190 (24-25) (2001), 3039-3067. Zbl1001.74040
  30. MATTHIES, H. G. - NIEKAMP, R. - STEINDORF, J., Algorithms for strong coupling procedures, Comput. Methods Appl. Mech. Engrg., 195, (17-18) (2006), 2028-2049. Zbl1142.74050MR2202913DOI10.1016/j.cma.2004.11.032
  31. MATTHIES, H. G. - STEINDORF, J., Partitioned strong coupling algorithms for fluidstructure interaction, Comput. Struct., 81 (2003), 1277-1286. 
  32. HENRI MORAND, J.-P. - OHAYON, ROGER, Interactions fluides-structures, volume 23 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics], Masson, Paris, 1992. Zbl0754.73071MR1180076
  33. PESKIN, C. S., Numerical analysis of blood flow in the heart, J. Computational Phys., 25, (3) (1977), 220-252. Zbl0403.76100MR490027DOI10.1016/0021-9991(77)90100-0
  34. PESKIN, C. S., The immersed boundary method, Acta Numer., 11 (2002), 479-517. Zbl1123.74309MR2009378DOI10.1017/S0962492902000077
  35. PESKIN, C. S. - MCQUEEN, D. M., A three-dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid, J. Comput. Phys., 81 (2) (1989), 372-405. Zbl0668.76159MR994353DOI10.1016/0021-9991(89)90213-1
  36. PIERRE, R., Local mass conservation and C 0 -discretizations of the Stokes problem, Houston J. Math., 20 (1) (1994), 115-127. Zbl0803.65105MR1272565
  37. QIN, J. - ZHANG, S., Stability of the finite elements 9 = ( 4 c + 1 ) and 9 = 5 c for stationary Stokes equations, Comput.84 (1-2) (2005), 70-77. MR2199741DOI10.1016/j.compstruc.2005.07.002
  38. SCOTT, L. R. - VOGELIUS, M., Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, RAIRO Modél. Math. Anal. Numér., 19 (1) (1985), 111-143. Zbl0608.65013MR813691DOI10.1051/m2an/1985190101111
  39. TAYLOR, C. - HOOD, P., A numerical solution of the Navier-Stokes equations using the finite element technique, Internat. J. Comput.1 (1) (1973), 73-100. Zbl0328.76020MR339677DOI10.1016/0045-7930(73)90027-3
  40. THATCHER, R. W., Locally mass-conserving Taylor-Hood elements for two- and three-dimensional flow, Internat. J. Numer. Methods Fluids, 11 (3) (1990), 341-353. Zbl0709.76083MR1065219DOI10.1002/fld.1650110307
  41. TIDD, D. M. - THATCHER, R. W. - KAYE, A., The free surface flow of Newtonian and non-Newtonian fluids trapped by surface tension, Internat. J. Numer. Methods Fluids, 8 (9) (1988), 1011-1027. MR961777DOI10.1002/fld.1650080904

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.