The Immersed Boundary Method for Fluid-Structure Interactions: Mathematical Formulation and Numerical
Bollettino dell'Unione Matematica Italiana (2012)
- Volume: 5, Issue: 3, page 711-724
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topBoffi, Daniele. "The Immersed Boundary Method for Fluid-Structure Interactions: Mathematical Formulation and Numerical." Bollettino dell'Unione Matematica Italiana 5.3 (2012): 711-724. <http://eudml.org/doc/290882>.
@article{Boffi2012,
abstract = {The Immersed Boundary Method (IBM) has been introduced by Peskin in the 70's in order to model and approximate fluid-structure interaction problems related to the blood flow in the heart. The original scheme makes use of finite differences for the discretization of the Navier-Stokes equations. Recently, a finite element formulation has been introduced which has the advantage of handling the presence of the solid (modeled via a Dirac delta function) in a more natural way. In this paper we review the finite element formulation of the IBM focusing, in particular, on the choice of the finite element spaces in order to guarantee a suitable mass conservation. Moreover, we present some links with the fictitious domain method.},
author = {Boffi, Daniele},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {711-724},
publisher = {Unione Matematica Italiana},
title = {The Immersed Boundary Method for Fluid-Structure Interactions: Mathematical Formulation and Numerical},
url = {http://eudml.org/doc/290882},
volume = {5},
year = {2012},
}
TY - JOUR
AU - Boffi, Daniele
TI - The Immersed Boundary Method for Fluid-Structure Interactions: Mathematical Formulation and Numerical
JO - Bollettino dell'Unione Matematica Italiana
DA - 2012/10//
PB - Unione Matematica Italiana
VL - 5
IS - 3
SP - 711
EP - 724
AB - The Immersed Boundary Method (IBM) has been introduced by Peskin in the 70's in order to model and approximate fluid-structure interaction problems related to the blood flow in the heart. The original scheme makes use of finite differences for the discretization of the Navier-Stokes equations. Recently, a finite element formulation has been introduced which has the advantage of handling the presence of the solid (modeled via a Dirac delta function) in a more natural way. In this paper we review the finite element formulation of the IBM focusing, in particular, on the choice of the finite element spaces in order to guarantee a suitable mass conservation. Moreover, we present some links with the fictitious domain method.
LA - eng
UR - http://eudml.org/doc/290882
ER -
References
top- BADIA, S. - NOBILE, F. - VERGARA, C., Fluid-structure partitioned procedures based on Robin transmission conditions, J. Comput. Phys., 227 (14) (2008), 7027-7051. Zbl1140.74010MR2435441DOI10.1016/j.jcp.2008.04.006
- BADIA, S. - QUAINI, A. - QUARTERONI, A., Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect, Comput. Methods Appl. Mech. Engrg., 197 (49-50) (2008), 4216-4232. Zbl1194.74058MR2463662DOI10.1016/j.cma.2008.04.018
- BADIA, S. - QUAINI, A. - QUARTERONI, A., Splitting methods based on algebraic factorization for fluid-structure interaction, SIAM J. Sci. Comput., 30 (4) (2008), 1778-1805. Zbl1368.74021MR2407141DOI10.1137/070680497
- BERCOVIER, M. - PIRONNEAU, O., Error estimates for finite element method solution of the Stokes problem in the primitive variables, Numer. Math., 33 (2) (1979), 211-224. Zbl0423.65058MR549450DOI10.1007/BF01399555
- BOFFI, D., Stability of higher order triangular Hood-Taylor methods for the stationary Stokes equations, Math. Models Methods Appl. Sci., 4 (2) (1994), 223-235. Zbl0804.76051MR1269482DOI10.1142/S0218202594000133
- BOFFI, D., Three-dimensional finite element methods for the Stokes problem, SIAM J. Numer. Anal., 34 (2) (1997), 664-670. Zbl0874.76032MR1442933DOI10.1137/S0036142994270193
- BOFFI, D. - CAVALLINI, N. - GARDINI, F. - GASTALDI, L., Local mass conservation of Stokes finite elements, To appear in J. Sci. Comput. (2011). Zbl1264.74259MR2948699DOI10.1007/s10915-011-9549-4
- BOFFI, D. - CAVALLINI, N. - GASTALDI, L., Finite element approach to immersed boundary method with different fluid and solid densities, To appear in Math. Models Methods Appl. Sci. (2011). Zbl1242.76190MR2864640DOI10.1142/S0218202511005829
- BOFFI, D. - CAVALLINI, N. - GASTALDI, L. - ZIKATANOV, L. T., In preparation.
- BOFFI, D. - GASTALDI, L., In preparation.
- BOFFI, D. - GASTALDI, L., A finite element approach for the immersed boundary method, Comput. & Structures, 81 (8-11) (2003), 491-501. In honor of Klaus-Jürgen Bathe. MR2001876DOI10.1016/S0045-7949(02)00404-2
- BOFFI, D. - GASTALDI, L. - HELTAI, L., Numerical stability of the finite element immersed boundary method, Math. Models Methods Appl. Sci., 17 (10) (2007), 1479-1505. Zbl1186.76661MR2359913DOI10.1142/S0218202507002352
- BOFFI, D. - GASTALDI, L. - HELTAI, L., On the CFL condition for the finite element immersed boundary method, Comput.85 (11-14) (2007), 775-783. MR2308727DOI10.1016/j.compstruc.2007.01.009
- BOFFI, D. - GASTALDI, L. - HELTAI, L. - PESKIN, CHARLES S., On the hyper-elastic formulation of the immersed boundary method, Comput. Methods Appl. Mech. Engrg., 197 (25-28) (2008), 2210-2231. Zbl1158.74523MR2412821DOI10.1016/j.cma.2007.09.015
- BRANDT, A. - LIVNE, E. O., Multigrid techniques: 1984 guide with applications to fluid dynamics, volume 67 of Classics in applied mathematics, SIAM, Philadelphia, 2011. Zbl1227.65121MR3396211DOI10.1137/1.9781611970753
- BREZZI, F. - FORTIN, M., Mixed and hybrid finite element methods, volume 15 of Springer Series in Computational Mathematics, Springer-Verlag, New York, 1991. Zbl0788.73002MR1115205DOI10.1007/978-1-4612-3172-1
- CAUSIN, P. - GERBEAU, J. F. - NOBILE, F., Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Comput. Methods Appl. Mech. Engrg., 194, (42-44) (2005), 4506-4527. Zbl1101.74027MR2157973DOI10.1016/j.cma.2004.12.005
- CHAPELLE, D. - BATHE, K.-J., The inf-sup test, Comput. & Structures, 47 (4-5) (1993), 537-545. Zbl0780.73074MR1224095DOI10.1016/0045-7949(93)90340-J
- DEPARIS, S. - FERNÁNDEZ, M. A. - FORMAGGIA, L., Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions, M2AN Math. Model. Numer. Anal., 37 (4) (2003), 601-616. Zbl1118.74315MR2018432DOI10.1051/m2an:2003050
- L. FORMAGGIA - A. QUARTERONI - A. VENEZIANI, editors, Cardiovascular mathematics, volume 1, of MS&A. Modeling, Simulation and Applications, Springer-Verlag Italia, Milan, 2009. Modeling and simulation of the circulatory system. Zbl1300.92005MR2488002DOI10.1007/88-470-0396-2_7
- GIRAULT, V. - GLOWINSKI, R. - PAN, T. W., A fictitious-domain method with distributed multiplier for the Stokes problem, In Applied nonlinear analysis, pages 159-174. Kluwer/Plenum, New York, 1999. Zbl0954.35127MR1727447
- GLOWINSKI, R. - PAN, T.-W. - PÉRIAUX, J., A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech. Engrg., 111 (3-4) (1994), 283-303. MR1259864DOI10.1016/0045-7825(94)90135-X
- GLOWINSKI, R. - PAN, T. W. - PÉRIAUX, J., Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies, Comput. Methods Appl. Mech. Engrg., 151 (1-2) (1998), 181-194. Symposium on Advances in Computational Mechanics, Vol. 3 (Austin, TX, 1997). Zbl0916.76052MR1625430DOI10.1016/S0045-7825(97)00116-3
- GLOWINSKI, R. - PÉRIAUX, J. - PAN, T.-W., Fictitious domain method for the Dirichlet problem and its generalization to some flow problems, In Finite elements in fluids, Part I, II (Barcelona, 1993), pages 347-368, Centro Internac. Métodos Numér. Ing., (Barcelona, 1993). Zbl0876.76060MR1292053
- GRESHO, P. M. - LEE, R. L. - CHAN, S. T. - LEONE, J. M., A new finite element for Boussinesq fluids. In Pro. Third Int. Conf. on Finite Elements in Flow Problems, pages 204-215. Wiley, New York, 1980. Zbl0447.76026
- GRIFFITHS, D. F., The effect of pressure approximation on finite element calculations of compressible flows. In Numerical Methods for Fluid Dynamics, pages 359-374. Academic Press, Morton, K. W. and Baines, M. J. edition, 1982.
- GUIDOBONI, G. - GLOWINSKI, R. - CAVALLINI, N. - CANIC, S., Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow, J. Comput. Phys., 228 (18) (2009), 6916-6937. Zbl1261.76056MR2567876DOI10.1016/j.jcp.2009.06.007
- HELTAI, L., On the Stability of the Finite Element Immersed Boundary Method, Comput. & Structures, 86 (7-8) (2008), 598-617.
- LE TALLEC, P. - MOURO, J., Fluid structure interaction with large structural displacements, Comput. Methods Appl. Mech. Engrg., 190 (24-25) (2001), 3039-3067. Zbl1001.74040
- MATTHIES, H. G. - NIEKAMP, R. - STEINDORF, J., Algorithms for strong coupling procedures, Comput. Methods Appl. Mech. Engrg., 195, (17-18) (2006), 2028-2049. Zbl1142.74050MR2202913DOI10.1016/j.cma.2004.11.032
- MATTHIES, H. G. - STEINDORF, J., Partitioned strong coupling algorithms for fluidstructure interaction, Comput. Struct., 81 (2003), 1277-1286.
- HENRI MORAND, J.-P. - OHAYON, ROGER, Interactions fluides-structures, volume 23 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics], Masson, Paris, 1992. Zbl0754.73071MR1180076
- PESKIN, C. S., Numerical analysis of blood flow in the heart, J. Computational Phys., 25, (3) (1977), 220-252. Zbl0403.76100MR490027DOI10.1016/0021-9991(77)90100-0
- PESKIN, C. S., The immersed boundary method, Acta Numer., 11 (2002), 479-517. Zbl1123.74309MR2009378DOI10.1017/S0962492902000077
- PESKIN, C. S. - MCQUEEN, D. M., A three-dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid, J. Comput. Phys., 81 (2) (1989), 372-405. Zbl0668.76159MR994353DOI10.1016/0021-9991(89)90213-1
- PIERRE, R., Local mass conservation and -discretizations of the Stokes problem, Houston J. Math., 20 (1) (1994), 115-127. Zbl0803.65105MR1272565
- QIN, J. - ZHANG, S., Stability of the finite elements and for stationary Stokes equations, Comput.84 (1-2) (2005), 70-77. MR2199741DOI10.1016/j.compstruc.2005.07.002
- SCOTT, L. R. - VOGELIUS, M., Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, RAIRO Modél. Math. Anal. Numér., 19 (1) (1985), 111-143. Zbl0608.65013MR813691DOI10.1051/m2an/1985190101111
- TAYLOR, C. - HOOD, P., A numerical solution of the Navier-Stokes equations using the finite element technique, Internat. J. Comput.1 (1) (1973), 73-100. Zbl0328.76020MR339677DOI10.1016/0045-7930(73)90027-3
- THATCHER, R. W., Locally mass-conserving Taylor-Hood elements for two- and three-dimensional flow, Internat. J. Numer. Methods Fluids, 11 (3) (1990), 341-353. Zbl0709.76083MR1065219DOI10.1002/fld.1650110307
- TIDD, D. M. - THATCHER, R. W. - KAYE, A., The free surface flow of Newtonian and non-Newtonian fluids trapped by surface tension, Internat. J. Numer. Methods Fluids, 8 (9) (1988), 1011-1027. MR961777DOI10.1002/fld.1650080904
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.