Viscosity Solutions of Two-Phase Free Boundary Problems for Elliptic and Parabolic Operators
Bollettino dell'Unione Matematica Italiana (2012)
- Volume: 5, Issue: 2, page 263-280
- ISSN: 0392-4041
Access Full Article
topHow to cite
topSalsa, Sandro. "Viscosity Solutions of Two-Phase Free Boundary Problems for Elliptic and Parabolic Operators." Bollettino dell'Unione Matematica Italiana 5.2 (2012): 263-280. <http://eudml.org/doc/290913>.
@article{Salsa2012,
author = {Salsa, Sandro},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {263-280},
publisher = {Unione Matematica Italiana},
title = {Viscosity Solutions of Two-Phase Free Boundary Problems for Elliptic and Parabolic Operators},
url = {http://eudml.org/doc/290913},
volume = {5},
year = {2012},
}
TY - JOUR
AU - Salsa, Sandro
TI - Viscosity Solutions of Two-Phase Free Boundary Problems for Elliptic and Parabolic Operators
JO - Bollettino dell'Unione Matematica Italiana
DA - 2012/6//
PB - Unione Matematica Italiana
VL - 5
IS - 2
SP - 263
EP - 280
LA - eng
UR - http://eudml.org/doc/290913
ER -
References
top- ALT, H. W. - CAFFARELLI, L., Existence and regularity for a minimum problem with free boundary, J. Reine und Angew. Math., 331, no. 1 (1982), 105-144. Zbl0449.35105MR618549
- ALT, H. W. - CAFFARELLI, L. - FRIEDMAN, A., Variational problems with two phases and their free boundaries, T. A.M.S., 282, no. 2 (1984)), 431-461. Zbl0844.35137MR732100DOI10.2307/1999245
- ARGIOLAS, R. - FERRARI, F., Flat free boundaries regularity in two-phase problems for a class of fully nonlinear elliptic operators with variable coefficients, Interfaces Free Bound., 11 (2009), 177-199. Zbl1179.35349MR2511639DOI10.4171/IFB/208
- ARGIOLAS, R. - GRIMALDI, A., Green's function, caloric measure and Fatou theorems for non-divergence parabolic equations in non-cylindrical domains, Forum Math., 20 (2008), 213-237. Zbl1165.35005MR2394920DOI10.1515/FORUM.2008.011
- ARGIOLAS, R. - GRIMALDI, A., The Dirichlet problem for second order parabolic operators in non-cylindrical domains, Math. Nachrichten., vol 283, n. 4 (2010), 522-542. Zbl1197.35130MR2649367DOI10.1002/mana.200610815
- ATHANASOPOULOS, - CAFFARELLI, L. - SALSA, S., Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems, Ann. Math., 143 (1996), 413-434. Zbl0853.35049MR1394964DOI10.2307/2118531
- ATHANASOPOULOS, - CAFFARELLI, L. - SALSA, S., Regularity of the free boundary in parabolic phase-transition problems, Acta Math., 176, no. 2 (1996), 245-282. Zbl0891.35164MR1397563DOI10.1007/BF02551583
- ATHANASOPOULOS, - CAFFARELLI, L. - SALSA, S., Phase-transition problems of parabolic type: flat free boundaries are smooth, Comm. Pure Appl. Math., 51 (1998), 77-112. Zbl0924.35197MR1486632DOI10.1002/(SICI)1097-0312(199801)51:1<77::AID-CPA4>3.3.CO;2-K
- CAFFARELLI, L., A Harnack inequality approach to the regularity of free boundaries, Part 1: Lipschitz free boundaries are , Revista Matematica Iberoamericana, 3 (1987), 139-162. Zbl0676.35085MR990856DOI10.4171/RMI/47
- CAFFARELLI, L., A Harnack inequality approach to the regularity of free boundaries. II. Flat free boundaries are Lipschitz, Comm. Pure Appl. Math., 42, no. 1 (1989), 55- 78. Zbl0676.35086MR973745DOI10.1002/cpa.3160420105
- CAFFARELLI, L., A Harnack inequality approach to the regularity of free boundaries, Part III: Existence theory, compactness and dependence on X. Ann. Sc. Norm. Sup. Pisa Cl. SC. (4), 15 (1988), 383-602. MR1029856
- CERUTTI, M. C. - FERRARI, F. - SALSA, S., Two-phase problems for linear elliptic operators with variable coefficients: Lipschitz free boundaries are . Arch. Rational Mech. Anal., 171 (2004), 329-348. Zbl1106.35144MR2038343DOI10.1007/s00205-003-0290-5
- CAFFARELLI, L. - SALSA, S., A geometric approach to free boundary problems. Graduate Studies in Mathematics, 68. American Mathematical Society, Providence, RI, 2005. x+270 pp. Zbl1083.35001MR2145284DOI10.1090/gsm/068
- DE SILVA, D., Free boundary regularity for a problem with right hand side, to appear on Interphases and Free Boundaries. Zbl1219.35372MR2813524DOI10.4171/IFB/255
- FABES, E. - GAROFALO, N. - MALAVE, M. - SALSA, S., Fatou Theorems for some nonlinear elliptic equations, Rev. Mat. Iberoamericana, 4 (1988) 227-251. Zbl0703.35058MR1028741DOI10.4171/RMI/73
- FERRARI, F., Two-phase problems for a class of fully nonlinear elliptic operators. Lipschitz free boundaries are , American Journal of Mathematics, 128, no. 3 (2006), 541-571. Zbl1142.35108MR2230916
- FELDMAN, M., Regularity for nonisotropic two-phase problems with Lipschitz free boundaries. Differential Integral Equations, 10, no. 6 (1997), 1171-1179. Zbl0940.35047MR1608061
- FELDMAN, M., Regularity of Lipschitz free boundaries in two-phase problems for fully nonlinear elliptic equations, Indiana Univ. Math. J., 50, no. 3 (2001), 1171-1200. Zbl1037.35104MR1871352DOI10.1512/iumj.2001.50.1921
- FERRARI, F. - SALSA, S., Regularity of the free boundary in two-phase problems for linear elliptic operators, Advances in Math., 214 (2007), 288-322. Zbl1189.35385MR2348032DOI10.1016/j.aim.2007.02.004
- FERRARI, F. - SALSA, S., Subsolutions of elliptic operators in divergence form and application to two-phase free boundary problem, Boundary Value Problems, vol. 2007 (2007) ID 21425. Zbl1188.35070MR2291927DOI10.1155/2007/57049
- FERRARI, F. - SALSA, S., Regularity of the solutions for parabolic two phase free boundary problems, Comm. Part. Diff. Equations, 354 (2010), 1095-1129. Zbl1193.35256MR2753629DOI10.1080/03605301003717126
- FERRARI, F. - SALSA, S., Two-phase problems for parabolic operators: smoothness of the front, preprint 288-322. Zbl1189.35385MR3139425DOI10.1002/cpa.21490
- FRIEDMAN, A., Variational Principles and Free Boundary problems, Wiley, New York, 1970. MR679313
- LU, G. - WANG, P., On the uniqueness of a solution of a two phase free boundary problem, Journal of Functional Analysis, 258 (2010), 2817-2833. Zbl1185.35340MR2593345DOI10.1016/j.jfa.2009.08.008
- KIM, I. C. - POZAR, N., Viscosity solutions for the two phase Stefan Problem, Comm. Part. Diff. Eq., 36 (2011), 42-66. Zbl1216.35181MR2763347DOI10.1080/03605302.2010.526980
- PRÜSS, J. - SAAL, J. - SIMONETT, G., Existence of analytic solutions for the classical Stefan problem, Math. Ann., 338 (2007), 703-755. Zbl1130.35136MR2317935DOI10.1007/s00208-007-0094-2
- SALSA, S., Regularity in free boundary problems, Conferenze del Seminario di Matematica, Università di Bari, 270 (1997). Zbl1045.35112MR1638198
- VERDI, C., Numerical Methods for Phase Transition Problems, B.U.M.I. (8), 1-B (1998) 83-108. Zbl0896.65064MR1619039
- WANG, P. Y., Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. I. Lipschitz free boundaries are , Comm. Pure Appl. Math., 53, no. 7 (2000), 799-810. Zbl1040.35158MR1752439DOI10.1002/(SICI)1097-0312(200007)53:7<799::AID-CPA1>3.0.CO;2-Q
- WANG, P. Y., Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. II. Flat free boundaries are Lipschitz, Comm. in Partial Differential equations, 27(7-8), no. 7 (2002), 1497-1514. Zbl1125.35424MR1924475DOI10.1081/PDE-120005846
- WANG, P. Y., Existence of solutions of two-phase free boundary for fully non linear equations of second order, J. of Geometric Analysis, no. 7 (2002), 1497-1514. Zbl1125.35424MR2005161DOI10.1007/BF02921886
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.