Viscosity Solutions of Two-Phase Free Boundary Problems for Elliptic and Parabolic Operators

Sandro Salsa

Bollettino dell'Unione Matematica Italiana (2012)

  • Volume: 5, Issue: 2, page 263-280
  • ISSN: 0392-4041

How to cite

top

Salsa, Sandro. "Viscosity Solutions of Two-Phase Free Boundary Problems for Elliptic and Parabolic Operators." Bollettino dell'Unione Matematica Italiana 5.2 (2012): 263-280. <http://eudml.org/doc/290913>.

@article{Salsa2012,
author = {Salsa, Sandro},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {263-280},
publisher = {Unione Matematica Italiana},
title = {Viscosity Solutions of Two-Phase Free Boundary Problems for Elliptic and Parabolic Operators},
url = {http://eudml.org/doc/290913},
volume = {5},
year = {2012},
}

TY - JOUR
AU - Salsa, Sandro
TI - Viscosity Solutions of Two-Phase Free Boundary Problems for Elliptic and Parabolic Operators
JO - Bollettino dell'Unione Matematica Italiana
DA - 2012/6//
PB - Unione Matematica Italiana
VL - 5
IS - 2
SP - 263
EP - 280
LA - eng
UR - http://eudml.org/doc/290913
ER -

References

top
  1. ALT, H. W. - CAFFARELLI, L., Existence and regularity for a minimum problem with free boundary, J. Reine und Angew. Math., 331, no. 1 (1982), 105-144. Zbl0449.35105MR618549
  2. ALT, H. W. - CAFFARELLI, L. - FRIEDMAN, A., Variational problems with two phases and their free boundaries, T. A.M.S., 282, no. 2 (1984)), 431-461. Zbl0844.35137MR732100DOI10.2307/1999245
  3. ARGIOLAS, R. - FERRARI, F., Flat free boundaries regularity in two-phase problems for a class of fully nonlinear elliptic operators with variable coefficients, Interfaces Free Bound., 11 (2009), 177-199. Zbl1179.35349MR2511639DOI10.4171/IFB/208
  4. ARGIOLAS, R. - GRIMALDI, A., Green's function, caloric measure and Fatou theorems for non-divergence parabolic equations in non-cylindrical domains, Forum Math., 20 (2008), 213-237. Zbl1165.35005MR2394920DOI10.1515/FORUM.2008.011
  5. ARGIOLAS, R. - GRIMALDI, A., The Dirichlet problem for second order parabolic operators in non-cylindrical domains, Math. Nachrichten., vol 283, n. 4 (2010), 522-542. Zbl1197.35130MR2649367DOI10.1002/mana.200610815
  6. ATHANASOPOULOS, - CAFFARELLI, L. - SALSA, S., Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems, Ann. Math., 143 (1996), 413-434. Zbl0853.35049MR1394964DOI10.2307/2118531
  7. ATHANASOPOULOS, - CAFFARELLI, L. - SALSA, S., Regularity of the free boundary in parabolic phase-transition problems, Acta Math., 176, no. 2 (1996), 245-282. Zbl0891.35164MR1397563DOI10.1007/BF02551583
  8. ATHANASOPOULOS, - CAFFARELLI, L. - SALSA, S., Phase-transition problems of parabolic type: flat free boundaries are smooth, Comm. Pure Appl. Math., 51 (1998), 77-112. Zbl0924.35197MR1486632DOI10.1002/(SICI)1097-0312(199801)51:1<77::AID-CPA4>3.3.CO;2-K
  9. CAFFARELLI, L., A Harnack inequality approach to the regularity of free boundaries, Part 1: Lipschitz free boundaries are C α 1 , Revista Matematica Iberoamericana, 3 (1987), 139-162. Zbl0676.35085MR990856DOI10.4171/RMI/47
  10. CAFFARELLI, L., A Harnack inequality approach to the regularity of free boundaries. II. Flat free boundaries are Lipschitz, Comm. Pure Appl. Math., 42, no. 1 (1989), 55- 78. Zbl0676.35086MR973745DOI10.1002/cpa.3160420105
  11. CAFFARELLI, L., A Harnack inequality approach to the regularity of free boundaries, Part III: Existence theory, compactness and dependence on X. Ann. Sc. Norm. Sup. Pisa Cl. SC. (4), 15 (1988), 383-602. MR1029856
  12. CERUTTI, M. C. - FERRARI, F. - SALSA, S., Two-phase problems for linear elliptic operators with variable coefficients: Lipschitz free boundaries are C 1 ; γ . Arch. Rational Mech. Anal., 171 (2004), 329-348. Zbl1106.35144MR2038343DOI10.1007/s00205-003-0290-5
  13. CAFFARELLI, L. - SALSA, S., A geometric approach to free boundary problems. Graduate Studies in Mathematics, 68. American Mathematical Society, Providence, RI, 2005. x+270 pp. Zbl1083.35001MR2145284DOI10.1090/gsm/068
  14. DE SILVA, D., Free boundary regularity for a problem with right hand side, to appear on Interphases and Free Boundaries. Zbl1219.35372MR2813524DOI10.4171/IFB/255
  15. FABES, E. - GAROFALO, N. - MALAVE, M. - SALSA, S., Fatou Theorems for some nonlinear elliptic equations, Rev. Mat. Iberoamericana, 4 (1988) 227-251. Zbl0703.35058MR1028741DOI10.4171/RMI/73
  16. FERRARI, F., Two-phase problems for a class of fully nonlinear elliptic operators. Lipschitz free boundaries are C 1 ; γ , American Journal of Mathematics, 128, no. 3 (2006), 541-571. Zbl1142.35108MR2230916
  17. FELDMAN, M., Regularity for nonisotropic two-phase problems with Lipschitz free boundaries. Differential Integral Equations, 10, no. 6 (1997), 1171-1179. Zbl0940.35047MR1608061
  18. FELDMAN, M., Regularity of Lipschitz free boundaries in two-phase problems for fully nonlinear elliptic equations, Indiana Univ. Math. J., 50, no. 3 (2001), 1171-1200. Zbl1037.35104MR1871352DOI10.1512/iumj.2001.50.1921
  19. FERRARI, F. - SALSA, S., Regularity of the free boundary in two-phase problems for linear elliptic operators, Advances in Math., 214 (2007), 288-322. Zbl1189.35385MR2348032DOI10.1016/j.aim.2007.02.004
  20. FERRARI, F. - SALSA, S., Subsolutions of elliptic operators in divergence form and application to two-phase free boundary problem, Boundary Value Problems, vol. 2007 (2007) ID 21425. Zbl1188.35070MR2291927DOI10.1155/2007/57049
  21. FERRARI, F. - SALSA, S., Regularity of the solutions for parabolic two phase free boundary problems, Comm. Part. Diff. Equations, 354 (2010), 1095-1129. Zbl1193.35256MR2753629DOI10.1080/03605301003717126
  22. FERRARI, F. - SALSA, S., Two-phase problems for parabolic operators: smoothness of the front, preprint 288-322. Zbl1189.35385MR3139425DOI10.1002/cpa.21490
  23. FRIEDMAN, A., Variational Principles and Free Boundary problems, Wiley, New York, 1970. MR679313
  24. LU, G. - WANG, P., On the uniqueness of a solution of a two phase free boundary problem, Journal of Functional Analysis, 258 (2010), 2817-2833. Zbl1185.35340MR2593345DOI10.1016/j.jfa.2009.08.008
  25. KIM, I. C. - POZAR, N., Viscosity solutions for the two phase Stefan Problem, Comm. Part. Diff. Eq., 36 (2011), 42-66. Zbl1216.35181MR2763347DOI10.1080/03605302.2010.526980
  26. PRÜSS, J. - SAAL, J. - SIMONETT, G., Existence of analytic solutions for the classical Stefan problem, Math. Ann., 338 (2007), 703-755. Zbl1130.35136MR2317935DOI10.1007/s00208-007-0094-2
  27. SALSA, S., Regularity in free boundary problems, Conferenze del Seminario di Matematica, Università di Bari, 270 (1997). Zbl1045.35112MR1638198
  28. VERDI, C., Numerical Methods for Phase Transition Problems, B.U.M.I. (8), 1-B (1998) 83-108. Zbl0896.65064MR1619039
  29. WANG, P. Y., Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. I. Lipschitz free boundaries are C 1 ; α , Comm. Pure Appl. Math., 53, no. 7 (2000), 799-810. Zbl1040.35158MR1752439DOI10.1002/(SICI)1097-0312(200007)53:7<799::AID-CPA1>3.0.CO;2-Q
  30. WANG, P. Y., Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. II. Flat free boundaries are Lipschitz, Comm. in Partial Differential equations, 27(7-8), no. 7 (2002), 1497-1514. Zbl1125.35424MR1924475DOI10.1081/PDE-120005846
  31. WANG, P. Y., Existence of solutions of two-phase free boundary for fully non linear equations of second order, J. of Geometric Analysis, no. 7 (2002), 1497-1514. Zbl1125.35424MR2005161DOI10.1007/BF02921886

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.