Some Remarks on Vector Potentials for Maxwell's Equations in Space-Time Carnot Groups

Annalisa Baldi; Bruno Franchi

Bollettino dell'Unione Matematica Italiana (2012)

  • Volume: 5, Issue: 2, page 337-355
  • ISSN: 0392-4041

Abstract

top
In this paper we prove a Γ -convergence result for time-depending variational functionals in a space-time Carnot group × 𝔾 arising in the study of Maxwell's equations in the group. Indeed, a Carnot groups 𝔾 (a connected simply connected nilpotent stratified Lie group) can be endowed with a complex of ``intrinsic'' differential forms that provide the natural setting for a class of ``intrinsic'' Maxwell's equations. Our main results states precisely that a the vector potentials of a solution of Maxwell's equation in × 𝔾 is a critical point of a suitable functional that is in turn a Γ -limit of a sequence of analogous Riemannian functionals.

How to cite

top

Baldi, Annalisa, and Franchi, Bruno. "Some Remarks on Vector Potentials for Maxwell's Equations in Space-Time Carnot Groups." Bollettino dell'Unione Matematica Italiana 5.2 (2012): 337-355. <http://eudml.org/doc/290932>.

@article{Baldi2012,
abstract = {In this paper we prove a $\Gamma$-convergence result for time-depending variational functionals in a space-time Carnot group $\mathbb\{R\} \times \mathbb\{G\}$ arising in the study of Maxwell's equations in the group. Indeed, a Carnot groups $\mathbb\{G\}$ (a connected simply connected nilpotent stratified Lie group) can be endowed with a complex of ``intrinsic'' differential forms that provide the natural setting for a class of ``intrinsic'' Maxwell's equations. Our main results states precisely that a the vector potentials of a solution of Maxwell's equation in $\mathbb\{R\} \times \mathbb\{G\}$ is a critical point of a suitable functional that is in turn a $\Gamma$-limit of a sequence of analogous Riemannian functionals.},
author = {Baldi, Annalisa, Franchi, Bruno},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {337-355},
publisher = {Unione Matematica Italiana},
title = {Some Remarks on Vector Potentials for Maxwell's Equations in Space-Time Carnot Groups},
url = {http://eudml.org/doc/290932},
volume = {5},
year = {2012},
}

TY - JOUR
AU - Baldi, Annalisa
AU - Franchi, Bruno
TI - Some Remarks on Vector Potentials for Maxwell's Equations in Space-Time Carnot Groups
JO - Bollettino dell'Unione Matematica Italiana
DA - 2012/6//
PB - Unione Matematica Italiana
VL - 5
IS - 2
SP - 337
EP - 355
AB - In this paper we prove a $\Gamma$-convergence result for time-depending variational functionals in a space-time Carnot group $\mathbb{R} \times \mathbb{G}$ arising in the study of Maxwell's equations in the group. Indeed, a Carnot groups $\mathbb{G}$ (a connected simply connected nilpotent stratified Lie group) can be endowed with a complex of ``intrinsic'' differential forms that provide the natural setting for a class of ``intrinsic'' Maxwell's equations. Our main results states precisely that a the vector potentials of a solution of Maxwell's equation in $\mathbb{R} \times \mathbb{G}$ is a critical point of a suitable functional that is in turn a $\Gamma$-limit of a sequence of analogous Riemannian functionals.
LA - eng
UR - http://eudml.org/doc/290932
ER -

References

top
  1. BALDI, A. - FRANCHI, B., Differential forms in Carnot groups: a Γ -convergence approach, Calc. Var. Partial Differential Equations, 43 (1) (2012), 211-229. Zbl1269.58001MR2886116DOI10.1007/s00526-011-0409-8
  2. BALDI, A. - FRANCHI, B., Maxwell's equations in anisotropic media and Maxwell's equations in Carnot groups as variational limits, preprinter, 2012. 
  3. BALDI, A. - FRANCHI, B. - TCHOU, N. - TESI, M. C., Compensated compactness for differential forms in Carnot groups and applications, Adv. Math., 223 (5) (2010), 1555-1607. Zbl1184.43007MR2592503DOI10.1016/j.aim.2009.09.020
  4. BALDI, A. - FRANCHI, B. - TESI, M. C., Differential Forms, Maxwell Equations and Compensated Compactness in Carnot Groups, Lecture Notes of Seminario Interdisciplinare di Matematica, 7 (2008), 21-40. MR2605146
  5. BONFIGLIOLI, A. - LANCONELLI, E. - UGUZZONI, F., Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007. Zbl1128.43001MR2363343
  6. BOURBAKI, N., Éléments de mathématique. XXVI. Groupes et algèbres de Lie. Chapitre 1: Algèbres de Lie, Actualités Sci. Ind. No. 1285. Hermann, Paris, 1960. Zbl0199.35203MR271276
  7. DAL MASO, G., An introduction to Γ -convergence, Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston Inc., Boston, MA, 1993. Zbl0816.49001MR1201152DOI10.1007/978-1-4612-0327-8
  8. FEDERER, H., Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR257325
  9. FOLLAND, G. B. - STEIN, E. M., Hardy spaces on homogeneous groups, volume 28 of Mathematical Notes. Princeton University Press, Princeton, N.J. (1982). MR657581
  10. FRANCHI, B. - SERAPIONI, R. - SERRA, C. F., On the structure of finite perimeter sets in step 2 Carnot groups, J. Geom. Anal., 13 (3) (2003), 421-466. Zbl1064.49033MR1984849DOI10.1007/BF02922053
  11. FRANCHI, B. - TESI, M. C., Wave and Maxwell's Equations in Carnot Groups, Commun. Contemp. Math., to appear, Zbl1251.35175MR2972522DOI10.1142/S0219199712500320
  12. FRANCHI, B. - TESI, M. C., Faraday's form and Maxwell's equations in the Heisenberg group, Milan J. Math., 77 (2009), 245-270. Zbl1205.43006MR2578879DOI10.1007/s00032-009-0104-9
  13. GRAYSON, M. - GROSSMAN, R., Models for free nilpotent Lie algebras, J. Algebra, 135 (1) (1990), 177-191. Zbl0717.17006MR1076084DOI10.1016/0021-8693(90)90156-I
  14. GREINER, P. C. - HOLCMAN, D. - KANNAI, Y., Wave kernels related to second-order operators, Duke Math. J., 114 (2) (2002), 329-386. Zbl1072.35130MR1921073DOI10.1215/S0012-7094-02-11426-4
  15. GROMOV, M., Carnot-Carathéodory spaces seen from within. In Sub-Riemannian geometry, volume 144 of Progr. Math. (Birkhäuser, Basel, 1996), 79-323. Zbl0864.53025MR1421823
  16. HÖRMANDER, L., Linear partial differential operators, Springer Verlag, Berlin, 1976. MR404822
  17. MELROSE, R., Propagation for the wave group of a positive subelliptic second-order differential operator. In Hyperbolic equations and related topics (Katata/Kyoto, 1984), Academic Press (Boston, MA, 1986), 181-192. MR925249
  18. RUMIN, M., Differential geometry on C-C spaces and application to the Novikov-Shubin numbers of nilpotent Lie groups, C. R. Acad. Sci. Paris Sér. I Math., 329 (11) (1999), 985-990. Zbl0982.53029MR1733906DOI10.1016/S0764-4442(00)88624-3
  19. RUMIN, M., Around heat decay on forms and relations of nilpotent Lie groups, In Séminaire de Théorie Spectrale et Géométrie, Vol. 19, Année 2000-2001, volume 19 of Sémin. Théor. Spectr. Géom., pp. 123-164, Univ. Grenoble I, Saint, 2001. Zbl1035.58021MR1909080
  20. SEMMES, S., On the nonexistence of bi-Lipschitz parameterizations and geometric problems about AI-weights, Rev. Mat. Iberoamericana, 12 (2) (1996), 337-410. Zbl0858.46017MR1402671DOI10.4171/RMI/201
  21. VENTSEL, E. - KRAUTHAMMER, T., Thin Plates and Shells Theory: Analysis, and Applications, Marcel Dekker, Inc., New York, 2001. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.