Some Remarks on Vector Potentials for Maxwell's Equations in Space-Time Carnot Groups
Bollettino dell'Unione Matematica Italiana (2012)
- Volume: 5, Issue: 2, page 337-355
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topBaldi, Annalisa, and Franchi, Bruno. "Some Remarks on Vector Potentials for Maxwell's Equations in Space-Time Carnot Groups." Bollettino dell'Unione Matematica Italiana 5.2 (2012): 337-355. <http://eudml.org/doc/290932>.
@article{Baldi2012,
abstract = {In this paper we prove a $\Gamma$-convergence result for time-depending variational functionals in a space-time Carnot group $\mathbb\{R\} \times \mathbb\{G\}$ arising in the study of Maxwell's equations in the group. Indeed, a Carnot groups $\mathbb\{G\}$ (a connected simply connected nilpotent stratified Lie group) can be endowed with a complex of ``intrinsic'' differential forms that provide the natural setting for a class of ``intrinsic'' Maxwell's equations. Our main results states precisely that a the vector potentials of a solution of Maxwell's equation in $\mathbb\{R\} \times \mathbb\{G\}$ is a critical point of a suitable functional that is in turn a $\Gamma$-limit of a sequence of analogous Riemannian functionals.},
author = {Baldi, Annalisa, Franchi, Bruno},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {337-355},
publisher = {Unione Matematica Italiana},
title = {Some Remarks on Vector Potentials for Maxwell's Equations in Space-Time Carnot Groups},
url = {http://eudml.org/doc/290932},
volume = {5},
year = {2012},
}
TY - JOUR
AU - Baldi, Annalisa
AU - Franchi, Bruno
TI - Some Remarks on Vector Potentials for Maxwell's Equations in Space-Time Carnot Groups
JO - Bollettino dell'Unione Matematica Italiana
DA - 2012/6//
PB - Unione Matematica Italiana
VL - 5
IS - 2
SP - 337
EP - 355
AB - In this paper we prove a $\Gamma$-convergence result for time-depending variational functionals in a space-time Carnot group $\mathbb{R} \times \mathbb{G}$ arising in the study of Maxwell's equations in the group. Indeed, a Carnot groups $\mathbb{G}$ (a connected simply connected nilpotent stratified Lie group) can be endowed with a complex of ``intrinsic'' differential forms that provide the natural setting for a class of ``intrinsic'' Maxwell's equations. Our main results states precisely that a the vector potentials of a solution of Maxwell's equation in $\mathbb{R} \times \mathbb{G}$ is a critical point of a suitable functional that is in turn a $\Gamma$-limit of a sequence of analogous Riemannian functionals.
LA - eng
UR - http://eudml.org/doc/290932
ER -
References
top- BALDI, A. - FRANCHI, B., Differential forms in Carnot groups: a -convergence approach, Calc. Var. Partial Differential Equations, 43 (1) (2012), 211-229. Zbl1269.58001MR2886116DOI10.1007/s00526-011-0409-8
- BALDI, A. - FRANCHI, B., Maxwell's equations in anisotropic media and Maxwell's equations in Carnot groups as variational limits, preprinter, 2012.
- BALDI, A. - FRANCHI, B. - TCHOU, N. - TESI, M. C., Compensated compactness for differential forms in Carnot groups and applications, Adv. Math., 223 (5) (2010), 1555-1607. Zbl1184.43007MR2592503DOI10.1016/j.aim.2009.09.020
- BALDI, A. - FRANCHI, B. - TESI, M. C., Differential Forms, Maxwell Equations and Compensated Compactness in Carnot Groups, Lecture Notes of Seminario Interdisciplinare di Matematica, 7 (2008), 21-40. MR2605146
- BONFIGLIOLI, A. - LANCONELLI, E. - UGUZZONI, F., Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007. Zbl1128.43001MR2363343
- BOURBAKI, N., Éléments de mathématique. XXVI. Groupes et algèbres de Lie. Chapitre 1: Algèbres de Lie, Actualités Sci. Ind. No. 1285. Hermann, Paris, 1960. Zbl0199.35203MR271276
- DAL MASO, G., An introduction to -convergence, Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston Inc., Boston, MA, 1993. Zbl0816.49001MR1201152DOI10.1007/978-1-4612-0327-8
- FEDERER, H., Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR257325
- FOLLAND, G. B. - STEIN, E. M., Hardy spaces on homogeneous groups, volume 28 of Mathematical Notes. Princeton University Press, Princeton, N.J. (1982). MR657581
- FRANCHI, B. - SERAPIONI, R. - SERRA, C. F., On the structure of finite perimeter sets in step 2 Carnot groups, J. Geom. Anal., 13 (3) (2003), 421-466. Zbl1064.49033MR1984849DOI10.1007/BF02922053
- FRANCHI, B. - TESI, M. C., Wave and Maxwell's Equations in Carnot Groups, Commun. Contemp. Math., to appear, Zbl1251.35175MR2972522DOI10.1142/S0219199712500320
- FRANCHI, B. - TESI, M. C., Faraday's form and Maxwell's equations in the Heisenberg group, Milan J. Math., 77 (2009), 245-270. Zbl1205.43006MR2578879DOI10.1007/s00032-009-0104-9
- GRAYSON, M. - GROSSMAN, R., Models for free nilpotent Lie algebras, J. Algebra, 135 (1) (1990), 177-191. Zbl0717.17006MR1076084DOI10.1016/0021-8693(90)90156-I
- GREINER, P. C. - HOLCMAN, D. - KANNAI, Y., Wave kernels related to second-order operators, Duke Math. J., 114 (2) (2002), 329-386. Zbl1072.35130MR1921073DOI10.1215/S0012-7094-02-11426-4
- GROMOV, M., Carnot-Carathéodory spaces seen from within. In Sub-Riemannian geometry, volume 144 of Progr. Math. (Birkhäuser, Basel, 1996), 79-323. Zbl0864.53025MR1421823
- HÖRMANDER, L., Linear partial differential operators, Springer Verlag, Berlin, 1976. MR404822
- MELROSE, R., Propagation for the wave group of a positive subelliptic second-order differential operator. In Hyperbolic equations and related topics (Katata/Kyoto, 1984), Academic Press (Boston, MA, 1986), 181-192. MR925249
- RUMIN, M., Differential geometry on C-C spaces and application to the Novikov-Shubin numbers of nilpotent Lie groups, C. R. Acad. Sci. Paris Sér. I Math., 329 (11) (1999), 985-990. Zbl0982.53029MR1733906DOI10.1016/S0764-4442(00)88624-3
- RUMIN, M., Around heat decay on forms and relations of nilpotent Lie groups, In Séminaire de Théorie Spectrale et Géométrie, Vol. 19, Année 2000-2001, volume 19 of Sémin. Théor. Spectr. Géom., pp. 123-164, Univ. Grenoble I, Saint, 2001. Zbl1035.58021MR1909080
- SEMMES, S., On the nonexistence of bi-Lipschitz parameterizations and geometric problems about AI-weights, Rev. Mat. Iberoamericana, 12 (2) (1996), 337-410. Zbl0858.46017MR1402671DOI10.4171/RMI/201
- VENTSEL, E. - KRAUTHAMMER, T., Thin Plates and Shells Theory: Analysis, and Applications, Marcel Dekker, Inc., New York, 2001.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.