Around heat decay on forms and relations of nilpotent Lie groups

Michel Rumin

Séminaire de théorie spectrale et géométrie (2000-2001)

  • Volume: 19, page 123-164
  • ISSN: 1624-5458

How to cite


Rumin, Michel. "Around heat decay on forms and relations of nilpotent Lie groups." Séminaire de théorie spectrale et géométrie 19 (2000-2001): 123-164. <>.

author = {Rumin, Michel},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {-Laplacian; zero spectrum},
language = {eng},
pages = {123-164},
publisher = {Institut Fourier},
title = {Around heat decay on forms and relations of nilpotent Lie groups},
url = {},
volume = {19},
year = {2000-2001},

AU - Rumin, Michel
TI - Around heat decay on forms and relations of nilpotent Lie groups
JO - Séminaire de théorie spectrale et géométrie
PY - 2000-2001
PB - Institut Fourier
VL - 19
SP - 123
EP - 164
LA - eng
KW - -Laplacian; zero spectrum
UR -
ER -


  1. [1] M.F. Atiyah. Elliptic operators, discrete groups and von Neumann algebras. Astérisque, 32-33 ( 1976), 43-72. Zbl0323.58015MR420729
  2. [2] R. Brooks. The fundamental group and the spectrum of the Laplacian. Comment. Math. Helu, 56 ( 1981), 581-598. Zbl0495.58029MR656213
  3. [3] James A.Carlson and Domingo Toledo. Quadratic présentations and nilpotent Kahler groups. J. Geom. Anal..5(3):359-377, 1995. Zbl0835.57014MR1360825
  4. [4] William Casselman and M. Scott Osborne. The n-cohomology of representations with an infinitesimal character. Compositio Math.,31 (2):219-227, 1975. Zbl0343.17006MR396704
  5. [5] Shirnping Chen. Examples of n-step nilpotent 1-formal 1-minimal models. C. R.Acad. Sci. Paris Sér. I Math., 321(2):223-228, 1995. Zbl0881.55011MR1345452
  6. [6] Michael Christ, Daryl Geiler, Pawel Gtowacki, and Larry Polin. Pseudodifferential operators on groups with dilations. DukeMath. J., 68(l):31-65, 1992. Zbl0764.35120
  7. [7] Michael Cowling, Anthony H. Dooley Adam Koranyi, and Fulvio Ricci, H-type groups and Iwasawa decompositions. Adv. Math., 87(1):1-41, 1991. Zbl0761.22010
  8. [8] L. Corwin and E. P. Greenleaf. Representations of nilpotent Lie groups and their applications. Part I. Cambridge University Press, Cambridge, 1990. Zbl0704.22007
  9. [9] Ch. Deninger and W. Singhof. On the cohomology of nilpotent Lie algebras. Bull. Soc. Math.France, 116(1):3-14, 1988. Zbl0653.17006
  10. [10] J. Dixmier. Cohomologie des algèbres de Lie nilpotentes. Acta Sci. Math., 16:246-250. 1955. Zbl0066.02403
  11. [11] G. B. Folland. Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat., 13(2): 161-207, 1975. Zbl0312.35026MR494315
  12. [12] Phillip A. Griffiths and John W. Morgan, Rational homotopy theory and differential forms. Birkhäuser Boston, Mass., 1981. Zbl0474.55001MR641551
  13. [13] M. Gromov. Carnot-Carathéodory spaces seen from within. In A. Bellaïche and J.-J. Risler, editors, Sub-Riemannian Geometry, volume 144 of Progress in Math, pages 79-323. Birkhäuser 1996. Zbl0864.53025MR1421823
  14. [14] M. Gromov and M.A. Shubin. Von Neumann spectra near zero. Geometrie and Functional Analysis, 1 (4) ( 1991), 375-404. Zbl0751.58039MR1132295
  15. [15] M. Gromov and M.A. Shubin. Near-cohomology of Hilbert complexes and topology of non-simply connected manifolds. In Méthodes semi-classiques. Astérisque, 210 ( 1992), 283-294. Zbl0797.57016MR1221363
  16. [16] B. Helffer and J. Nourrigat. Caractérisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe de Lie nilpotent gradué. Comm. Partial Differential Equations,4 (8):899-958, 1979. Zbl0423.35040MR537467
  17. [17] Bernard Helffer and Jean Nourrigat. Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs. Birkhäuser Boston Inc., Boston, MA, 1985. Zbl0568.35003MR897103
  18. [18] Dale Husemoller. Fibre bundies. Springer-Verlag, New York, third edition, 1994. Zbl0307.55015MR1249482
  19. [19] Aroldo Kaplan. On the geometry of groups of Heisenberg type. Bull. London Math. Soc, 15(l):35-42, 1983. Zbl0521.53048MR686346
  20. [20] John Lott. Heat kernels on covering spaces and topological invariants. J. Differential Geom., 35(2):471-510, 1992. Zbl0770.58040MR1158345
  21. [21] P. Pansu. Introduction to L2 Betti numbers. In Riemannian geometry (Waterloo, ON, 1993), pages 53-86. Amer. Math. Soc, Providence, RI, 1996. Zbl0848.53025MR1377309
  22. [22] Linda Preiss Rothschild and E. M. Stein. Hypoelliptic differential operators and nilpotent groups. Acta Malh., 137(3-4) :247-320, 1976. Zbl0346.35030MR436223
  23. [23] M. Reed and B. Simon. Methods of Modem Mathematical Physics, volumes 1and 2 : Functional Analysis. Academie Press, 1972. Zbl0242.46001
  24. [24] M. Rumin. Un complexe de formes différentielles sur les variétés de contact. C. R.Acad. Sci. ParisSér. I Math., 310(6):401-404, 1990. Zbl0694.57010MR1046521
  25. [25] M. Rumin. Differential geometry on C-C spaces and application to the Novikov-Shubin numbers of nilpotent Lie groups. C. R. Acad. Sci. Paris Sér. I Math., 329(11):985-990, 1999. Zbl0982.53029MR1733906
  26. [26] Simon Salamon. Riemannian geometry and holonomy groups. Longman Scientific & Technical, Harlow, 1989. Zbl0685.53001MR1004008
  27. [27] N. Th. Varopoulos, L. Saloff-Coste, and T. Coulhon. Analysis and geometry on groups. Cambridge University Press, Cambridge, 1992. Zbl1179.22009MR1218884

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.