Three-Dimensional Paracontact Walker Structures

G. Calvaruso

Bollettino dell'Unione Matematica Italiana (2012)

  • Volume: 5, Issue: 2, page 387-403
  • ISSN: 0392-4041

Abstract

top
We investigate paracontact metric three-manifolds equipped with an associated Walker metric. Some interesting paracontact metric properties are studied for the paracontact Walker structures introduced in [10], also clarifying their relationships with some curvature properties. Moreover, improving the result on [4] on locally symmetric Walker three-manifolds, we show that homogeneity conditions give some obstructions to the existence of compatible paracontact structures on a Walker three-manifold.

How to cite

top

Calvaruso, G.. "Three-Dimensional Paracontact Walker Structures." Bollettino dell'Unione Matematica Italiana 5.2 (2012): 387-403. <http://eudml.org/doc/290945>.

@article{Calvaruso2012,
abstract = {We investigate paracontact metric three-manifolds equipped with an associated Walker metric. Some interesting paracontact metric properties are studied for the paracontact Walker structures introduced in [10], also clarifying their relationships with some curvature properties. Moreover, improving the result on [4] on locally symmetric Walker three-manifolds, we show that homogeneity conditions give some obstructions to the existence of compatible paracontact structures on a Walker three-manifold.},
author = {Calvaruso, G.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {387-403},
publisher = {Unione Matematica Italiana},
title = {Three-Dimensional Paracontact Walker Structures},
url = {http://eudml.org/doc/290945},
volume = {5},
year = {2012},
}

TY - JOUR
AU - Calvaruso, G.
TI - Three-Dimensional Paracontact Walker Structures
JO - Bollettino dell'Unione Matematica Italiana
DA - 2012/6//
PB - Unione Matematica Italiana
VL - 5
IS - 2
SP - 387
EP - 403
AB - We investigate paracontact metric three-manifolds equipped with an associated Walker metric. Some interesting paracontact metric properties are studied for the paracontact Walker structures introduced in [10], also clarifying their relationships with some curvature properties. Moreover, improving the result on [4] on locally symmetric Walker three-manifolds, we show that homogeneity conditions give some obstructions to the existence of compatible paracontact structures on a Walker three-manifold.
LA - eng
UR - http://eudml.org/doc/290945
ER -

References

top
  1. BLAIR, D. E. - KOUFOGIORGOS, T. - SHARMA, R., A classification of 3-dimensional contact metric manifolds with Q ϕ = ϕ Q , Kodai Math. J.13 (1990), 391-401. MR1078554DOI10.2996/kmj/1138039284
  2. CALVARUSO, G., Homogeneous structures on three-dimensional Lorentzian manifolds, J. Geom. Phys., 57 (2007), 1279-1291. Addendum: J. Geom. Phys., 58 (2008), 291-292. Zbl1112.53051MR2384316DOI10.1016/j.geomphys.2007.10.006
  3. CALVARUSO, G., Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds, Geom. Dedicata, 127 (2007), 99-119. Zbl1126.53044MR2338519DOI10.1007/s10711-007-9163-7
  4. CALVARUSO, G., Homogeneous paracontact metric three-manifolds, Illinois J. Math., to appear. Zbl1273.53020MR3020703
  5. CALVARUSO, G. - DE LEO, B., Semi-symmetric Lorentzian three-manifolds admitting a parallel degenerate line field, Mediterr. J. Math., 7 (2010), 89-100. Zbl1193.53146MR2645904DOI10.1007/s00009-010-0029-0
  6. CALVARUSO, G. - KOWALSKI, O., On the Ricci operator of locally homogeneous Lorentzian 3-manifolds, Central Eur. J. Math (1), 7 (2009), 124-139. Zbl1180.53070MR2470138DOI10.2478/s11533-008-0061-5
  7. CALVARUSO, G. - PERRONE, D., Contact pseudo-metric manifolds, Diff. Geom. Appl., 28 (2010), 615-634. Zbl1200.53071MR2670091DOI10.1016/j.difgeo.2010.05.006
  8. CHAICHI, M. - GARCÍA-RÍO, E. - VÁZQUEZ-ABAL, M. E., Three-dimensional Lorentz manifolds admitting a parallel null vector field, J. Phys. A: Math. Gen., 38 (2005), 841-850. Zbl1068.53049MR2125237DOI10.1088/0305-4470/38/4/005
  9. CORDERO, L. A. - PARKER, P. E., Left-invariant Lorentzian metrics on 3-dimensional Lie groups, Rend. Mat. Serie VII, 17 (1997), 129-155. Zbl0948.53027MR1459412
  10. GARCÍA-RÍO, E. - HAJI-BADALI, A. - VÁZQUEZ-ABAL, M. E. - VÁZQUEZ-LORENZO, R., On the local geometry of three-dimensional Walker metrics, Advances in Lorentzian Geometry77-87, Shaker Verlag, Aachen, 2008. Zbl1161.53353MR2603188
  11. KANEYUKI, S. - KONZAI, M., Paracomplex structures and affine symmetric spaces, Tokyo J. Math., 8 (1985), 301-318. MR800077DOI10.3836/tjm/1270151571
  12. KANEYUKI, S. - WILLIAMS, F.L., Almost paracontact and paraHodge structures on manifolds, Nagoya Math. J., 99 (1985), 173-187. Zbl0576.53024MR805088DOI10.1017/S0027763000021565
  13. LIBERMANN, P., Sur les structures presque paracomplexes, C. R. Acad. Sci. Paris, 234 (1952), 2517-2519. Zbl0046.15601MR48893
  14. O'NEILL, B., Semi-Riemannian Geometry, New York: Academic Press, 1983. MR719023
  15. RAHMANI, S., Métriques de Lorentz sur les groupes de Lie unimodulaires de dimension trois, J. Geom. Phys., 9 (1992), 295-302. Zbl0752.53036MR1171140DOI10.1016/0393-0440(92)90033-W
  16. WALKER, A. G., Canonical form for a Riemannian space with a parallel field of null planes, Quart. J. Math. Oxford, 1 (1950), 69-79. Zbl0036.38303MR35085DOI10.1093/qmath/1.1.69
  17. ZAMKOVOY, S., Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom., 36 (2009), 37-60. Zbl1177.53031MR2520029DOI10.1007/s10455-008-9147-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.