Three-Dimensional Paracontact Walker Structures
Bollettino dell'Unione Matematica Italiana (2012)
- Volume: 5, Issue: 2, page 387-403
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topCalvaruso, G.. "Three-Dimensional Paracontact Walker Structures." Bollettino dell'Unione Matematica Italiana 5.2 (2012): 387-403. <http://eudml.org/doc/290945>.
@article{Calvaruso2012,
abstract = {We investigate paracontact metric three-manifolds equipped with an associated Walker metric. Some interesting paracontact metric properties are studied for the paracontact Walker structures introduced in [10], also clarifying their relationships with some curvature properties. Moreover, improving the result on [4] on locally symmetric Walker three-manifolds, we show that homogeneity conditions give some obstructions to the existence of compatible paracontact structures on a Walker three-manifold.},
author = {Calvaruso, G.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {387-403},
publisher = {Unione Matematica Italiana},
title = {Three-Dimensional Paracontact Walker Structures},
url = {http://eudml.org/doc/290945},
volume = {5},
year = {2012},
}
TY - JOUR
AU - Calvaruso, G.
TI - Three-Dimensional Paracontact Walker Structures
JO - Bollettino dell'Unione Matematica Italiana
DA - 2012/6//
PB - Unione Matematica Italiana
VL - 5
IS - 2
SP - 387
EP - 403
AB - We investigate paracontact metric three-manifolds equipped with an associated Walker metric. Some interesting paracontact metric properties are studied for the paracontact Walker structures introduced in [10], also clarifying their relationships with some curvature properties. Moreover, improving the result on [4] on locally symmetric Walker three-manifolds, we show that homogeneity conditions give some obstructions to the existence of compatible paracontact structures on a Walker three-manifold.
LA - eng
UR - http://eudml.org/doc/290945
ER -
References
top- BLAIR, D. E. - KOUFOGIORGOS, T. - SHARMA, R., A classification of 3-dimensional contact metric manifolds with , Kodai Math. J.13 (1990), 391-401. MR1078554DOI10.2996/kmj/1138039284
- CALVARUSO, G., Homogeneous structures on three-dimensional Lorentzian manifolds, J. Geom. Phys., 57 (2007), 1279-1291. Addendum: J. Geom. Phys., 58 (2008), 291-292. Zbl1112.53051MR2384316DOI10.1016/j.geomphys.2007.10.006
- CALVARUSO, G., Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds, Geom. Dedicata, 127 (2007), 99-119. Zbl1126.53044MR2338519DOI10.1007/s10711-007-9163-7
- CALVARUSO, G., Homogeneous paracontact metric three-manifolds, Illinois J. Math., to appear. Zbl1273.53020MR3020703
- CALVARUSO, G. - DE LEO, B., Semi-symmetric Lorentzian three-manifolds admitting a parallel degenerate line field, Mediterr. J. Math., 7 (2010), 89-100. Zbl1193.53146MR2645904DOI10.1007/s00009-010-0029-0
- CALVARUSO, G. - KOWALSKI, O., On the Ricci operator of locally homogeneous Lorentzian 3-manifolds, Central Eur. J. Math (1), 7 (2009), 124-139. Zbl1180.53070MR2470138DOI10.2478/s11533-008-0061-5
- CALVARUSO, G. - PERRONE, D., Contact pseudo-metric manifolds, Diff. Geom. Appl., 28 (2010), 615-634. Zbl1200.53071MR2670091DOI10.1016/j.difgeo.2010.05.006
- CHAICHI, M. - GARCÍA-RÍO, E. - VÁZQUEZ-ABAL, M. E., Three-dimensional Lorentz manifolds admitting a parallel null vector field, J. Phys. A: Math. Gen., 38 (2005), 841-850. Zbl1068.53049MR2125237DOI10.1088/0305-4470/38/4/005
- CORDERO, L. A. - PARKER, P. E., Left-invariant Lorentzian metrics on 3-dimensional Lie groups, Rend. Mat. Serie VII, 17 (1997), 129-155. Zbl0948.53027MR1459412
- GARCÍA-RÍO, E. - HAJI-BADALI, A. - VÁZQUEZ-ABAL, M. E. - VÁZQUEZ-LORENZO, R., On the local geometry of three-dimensional Walker metrics, Advances in Lorentzian Geometry77-87, Shaker Verlag, Aachen, 2008. Zbl1161.53353MR2603188
- KANEYUKI, S. - KONZAI, M., Paracomplex structures and affine symmetric spaces, Tokyo J. Math., 8 (1985), 301-318. MR800077DOI10.3836/tjm/1270151571
- KANEYUKI, S. - WILLIAMS, F.L., Almost paracontact and paraHodge structures on manifolds, Nagoya Math. J., 99 (1985), 173-187. Zbl0576.53024MR805088DOI10.1017/S0027763000021565
- LIBERMANN, P., Sur les structures presque paracomplexes, C. R. Acad. Sci. Paris, 234 (1952), 2517-2519. Zbl0046.15601MR48893
- O'NEILL, B., Semi-Riemannian Geometry, New York: Academic Press, 1983. MR719023
- RAHMANI, S., Métriques de Lorentz sur les groupes de Lie unimodulaires de dimension trois, J. Geom. Phys., 9 (1992), 295-302. Zbl0752.53036MR1171140DOI10.1016/0393-0440(92)90033-W
- WALKER, A. G., Canonical form for a Riemannian space with a parallel field of null planes, Quart. J. Math. Oxford, 1 (1950), 69-79. Zbl0036.38303MR35085DOI10.1093/qmath/1.1.69
- ZAMKOVOY, S., Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom., 36 (2009), 37-60. Zbl1177.53031MR2520029DOI10.1007/s10455-008-9147-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.