On the Ricci operator of locally homogeneous Lorentzian 3-manifolds

Giovanni Calvaruso; Oldrich Kowalski

Open Mathematics (2009)

  • Volume: 7, Issue: 1, page 124-139
  • ISSN: 2391-5455

Abstract

top
We determine the admissible forms for the Ricci operator of three-dimensional locally homogeneous Lorentzian manifolds.

How to cite

top

Giovanni Calvaruso, and Oldrich Kowalski. "On the Ricci operator of locally homogeneous Lorentzian 3-manifolds." Open Mathematics 7.1 (2009): 124-139. <http://eudml.org/doc/269102>.

@article{GiovanniCalvaruso2009,
abstract = {We determine the admissible forms for the Ricci operator of three-dimensional locally homogeneous Lorentzian manifolds.},
author = {Giovanni Calvaruso, Oldrich Kowalski},
journal = {Open Mathematics},
keywords = {Lorentzian homogeneous spaces; Ricci operator; Segre type; Ricci tensor; symmetric space},
language = {eng},
number = {1},
pages = {124-139},
title = {On the Ricci operator of locally homogeneous Lorentzian 3-manifolds},
url = {http://eudml.org/doc/269102},
volume = {7},
year = {2009},
}

TY - JOUR
AU - Giovanni Calvaruso
AU - Oldrich Kowalski
TI - On the Ricci operator of locally homogeneous Lorentzian 3-manifolds
JO - Open Mathematics
PY - 2009
VL - 7
IS - 1
SP - 124
EP - 139
AB - We determine the admissible forms for the Ricci operator of three-dimensional locally homogeneous Lorentzian manifolds.
LA - eng
KW - Lorentzian homogeneous spaces; Ricci operator; Segre type; Ricci tensor; symmetric space
UR - http://eudml.org/doc/269102
ER -

References

top
  1. [1] Bueken P., Three-dimensional Lorentzian manifolds with constant principal Ricci curvatures π1 = π2 ≠ π3, J. Math. Phys., 1997, 38, 1000–1013 http://dx.doi.org/10.1063/1.531880[Crossref] Zbl0876.53042
  2. [2] Bueken P., On curvature homogeneous three-dimensional Lorentzian manifolds, J. Geom. Phys., 1997, 22, 349–362 http://dx.doi.org/10.1016/S0393-0440(96)00037-X[Crossref] Zbl0881.53055
  3. [3] Bueken P., Djoric M., Three-dimensional Lorentz metrics and curvature homogeneity of order one, Ann. Glob. Anal. Geom., 2000, 18, 85–103 http://dx.doi.org/10.1023/A:1006612120550[Crossref] Zbl0947.53037
  4. [4] Calvaruso G., Homogeneous structures on three-dimensional Lorentzian manifolds, J. Geom. Phys., 2007, 57, 1279–1291. Addendum: J. Geom. Phys., 2008, 58, 291–292 http://dx.doi.org/10.1016/j.geomphys.2006.10.005[Crossref] Zbl1112.53051
  5. [5] Calvaruso G., Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds, Geom. Dedicata, 2007, 127, 99–119 http://dx.doi.org/10.1007/s10711-007-9163-7[Crossref] Zbl1126.53044
  6. [6] Calvaruso G., Pseudo-Riemannian 3-manifolds with prescribed distinct constant Ricci eigenvalues, Diff. Geom. Appl., 2008, 26, 419–433 http://dx.doi.org/10.1016/j.difgeo.2007.11.031[Crossref] Zbl1153.53053
  7. [7] Calvaruso G., Three-dimensional homogeneous Lorentzian metrics with prescribed Ricci tensor, preprint Zbl1153.81329
  8. [8] Chaichi M., García-Río E., Vázquez-Abal M.E., Three-dimensional Lorentz manifolds admitting a parallel null vector field, J. Phys. A: Math. Gen., 2005, 38, 841–850 http://dx.doi.org/10.1088/0305-4470/38/4/005[Crossref] Zbl1068.53049
  9. [9] Cordero L.A., Parker P.E., Left-invariant Lorentzian metrics on 3-dimensional Lie groups, Rend. Mat., Serie VII, 1997, 17, 129–155 Zbl0948.53027
  10. [10] Kowalski O., Nonhomogeneous Riemannian 3-manifolds with distinct constant Ricci eigenvalues, Nagoya Math. J., 1993, 132, 1–36 Zbl0789.53024
  11. [11] Kowalski O., Nikčević S.Ž., On Ricci eigenvalues of locally homogeneous Riemannian 3-manifolds, Geom. Dedicata, 1996, 62, 65–72 http://dx.doi.org/10.1007/BF00240002[Crossref] Zbl0859.53034
  12. [12] Kowalski O., Prüfer F., On Riemannian 3-manifolds with distinct constant Ricci eigenvalues, Math. Ann., 1994, 300, 17–28 http://dx.doi.org/10.1007/BF01450473[Crossref] Zbl0813.53020
  13. [13] Milnor J., Curvature of left invariant metrics on Lie groups, Adv. Math., 1976, 21, 293–329 http://dx.doi.org/10.1016/S0001-8708(76)80002-3[Crossref] Zbl0341.53030
  14. [14] O’Neill B., Semi-Riemannian Geometry, Academic Press, New York, 1983 
  15. [15] Nomizu K., Left-invariant Lorentz metrics on Lie groups, Osaka J. Math., 1979, 16, 143–150 Zbl0397.53047
  16. [16] Rahmani S., Métriques de Lorentz sur les groupes de Lie unimodulaires de dimension trois, J. Geom. Phys., 1992, 9, 295–302 (in French) http://dx.doi.org/10.1016/0393-0440(92)90033-W[Crossref] 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.