On the Ricci operator of locally homogeneous Lorentzian 3-manifolds
Giovanni Calvaruso; Oldrich Kowalski
Open Mathematics (2009)
- Volume: 7, Issue: 1, page 124-139
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topGiovanni Calvaruso, and Oldrich Kowalski. "On the Ricci operator of locally homogeneous Lorentzian 3-manifolds." Open Mathematics 7.1 (2009): 124-139. <http://eudml.org/doc/269102>.
@article{GiovanniCalvaruso2009,
abstract = {We determine the admissible forms for the Ricci operator of three-dimensional locally homogeneous Lorentzian manifolds.},
author = {Giovanni Calvaruso, Oldrich Kowalski},
journal = {Open Mathematics},
keywords = {Lorentzian homogeneous spaces; Ricci operator; Segre type; Ricci tensor; symmetric space},
language = {eng},
number = {1},
pages = {124-139},
title = {On the Ricci operator of locally homogeneous Lorentzian 3-manifolds},
url = {http://eudml.org/doc/269102},
volume = {7},
year = {2009},
}
TY - JOUR
AU - Giovanni Calvaruso
AU - Oldrich Kowalski
TI - On the Ricci operator of locally homogeneous Lorentzian 3-manifolds
JO - Open Mathematics
PY - 2009
VL - 7
IS - 1
SP - 124
EP - 139
AB - We determine the admissible forms for the Ricci operator of three-dimensional locally homogeneous Lorentzian manifolds.
LA - eng
KW - Lorentzian homogeneous spaces; Ricci operator; Segre type; Ricci tensor; symmetric space
UR - http://eudml.org/doc/269102
ER -
References
top- [1] Bueken P., Three-dimensional Lorentzian manifolds with constant principal Ricci curvatures π1 = π2 ≠ π3, J. Math. Phys., 1997, 38, 1000–1013 http://dx.doi.org/10.1063/1.531880[Crossref] Zbl0876.53042
- [2] Bueken P., On curvature homogeneous three-dimensional Lorentzian manifolds, J. Geom. Phys., 1997, 22, 349–362 http://dx.doi.org/10.1016/S0393-0440(96)00037-X[Crossref] Zbl0881.53055
- [3] Bueken P., Djoric M., Three-dimensional Lorentz metrics and curvature homogeneity of order one, Ann. Glob. Anal. Geom., 2000, 18, 85–103 http://dx.doi.org/10.1023/A:1006612120550[Crossref] Zbl0947.53037
- [4] Calvaruso G., Homogeneous structures on three-dimensional Lorentzian manifolds, J. Geom. Phys., 2007, 57, 1279–1291. Addendum: J. Geom. Phys., 2008, 58, 291–292 http://dx.doi.org/10.1016/j.geomphys.2006.10.005[Crossref] Zbl1112.53051
- [5] Calvaruso G., Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds, Geom. Dedicata, 2007, 127, 99–119 http://dx.doi.org/10.1007/s10711-007-9163-7[Crossref] Zbl1126.53044
- [6] Calvaruso G., Pseudo-Riemannian 3-manifolds with prescribed distinct constant Ricci eigenvalues, Diff. Geom. Appl., 2008, 26, 419–433 http://dx.doi.org/10.1016/j.difgeo.2007.11.031[Crossref] Zbl1153.53053
- [7] Calvaruso G., Three-dimensional homogeneous Lorentzian metrics with prescribed Ricci tensor, preprint Zbl1153.81329
- [8] Chaichi M., García-Río E., Vázquez-Abal M.E., Three-dimensional Lorentz manifolds admitting a parallel null vector field, J. Phys. A: Math. Gen., 2005, 38, 841–850 http://dx.doi.org/10.1088/0305-4470/38/4/005[Crossref] Zbl1068.53049
- [9] Cordero L.A., Parker P.E., Left-invariant Lorentzian metrics on 3-dimensional Lie groups, Rend. Mat., Serie VII, 1997, 17, 129–155 Zbl0948.53027
- [10] Kowalski O., Nonhomogeneous Riemannian 3-manifolds with distinct constant Ricci eigenvalues, Nagoya Math. J., 1993, 132, 1–36 Zbl0789.53024
- [11] Kowalski O., Nikčević S.Ž., On Ricci eigenvalues of locally homogeneous Riemannian 3-manifolds, Geom. Dedicata, 1996, 62, 65–72 http://dx.doi.org/10.1007/BF00240002[Crossref] Zbl0859.53034
- [12] Kowalski O., Prüfer F., On Riemannian 3-manifolds with distinct constant Ricci eigenvalues, Math. Ann., 1994, 300, 17–28 http://dx.doi.org/10.1007/BF01450473[Crossref] Zbl0813.53020
- [13] Milnor J., Curvature of left invariant metrics on Lie groups, Adv. Math., 1976, 21, 293–329 http://dx.doi.org/10.1016/S0001-8708(76)80002-3[Crossref] Zbl0341.53030
- [14] O’Neill B., Semi-Riemannian Geometry, Academic Press, New York, 1983
- [15] Nomizu K., Left-invariant Lorentz metrics on Lie groups, Osaka J. Math., 1979, 16, 143–150 Zbl0397.53047
- [16] Rahmani S., Métriques de Lorentz sur les groupes de Lie unimodulaires de dimension trois, J. Geom. Phys., 1992, 9, 295–302 (in French) http://dx.doi.org/10.1016/0393-0440(92)90033-W[Crossref]
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.