A Griffiths' Theorem for Varieties with Isolated Singularities

Vincenzo di Gennaro; Davide Franco; Giambattista Marini

Bollettino dell'Unione Matematica Italiana (2012)

  • Volume: 5, Issue: 1, page 159-172
  • ISSN: 0392-4041

Abstract

top
By the fundamental work of Griffiths one knows that, under suitable assumption, homological and algebraic equivalence do not coincide for a general hypersurface section of a smooth projective variety Y. In the present paper we prove the same result in case Y has isolated singularities.

How to cite

top

di Gennaro, Vincenzo, Franco, Davide, and Marini, Giambattista. "A Griffiths' Theorem for Varieties with Isolated Singularities." Bollettino dell'Unione Matematica Italiana 5.1 (2012): 159-172. <http://eudml.org/doc/290950>.

@article{diGennaro2012,
abstract = {By the fundamental work of Griffiths one knows that, under suitable assumption, homological and algebraic equivalence do not coincide for a general hypersurface section of a smooth projective variety Y. In the present paper we prove the same result in case Y has isolated singularities.},
author = {di Gennaro, Vincenzo, Franco, Davide, Marini, Giambattista},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {159-172},
publisher = {Unione Matematica Italiana},
title = {A Griffiths' Theorem for Varieties with Isolated Singularities},
url = {http://eudml.org/doc/290950},
volume = {5},
year = {2012},
}

TY - JOUR
AU - di Gennaro, Vincenzo
AU - Franco, Davide
AU - Marini, Giambattista
TI - A Griffiths' Theorem for Varieties with Isolated Singularities
JO - Bollettino dell'Unione Matematica Italiana
DA - 2012/2//
PB - Unione Matematica Italiana
VL - 5
IS - 1
SP - 159
EP - 172
AB - By the fundamental work of Griffiths one knows that, under suitable assumption, homological and algebraic equivalence do not coincide for a general hypersurface section of a smooth projective variety Y. In the present paper we prove the same result in case Y has isolated singularities.
LA - eng
UR - http://eudml.org/doc/290950
ER -

References

top
  1. DI GENNARO, V. - FRANCO, D., Monodromy of a family of hypersurfaces, Ann. Scient. Éc. Norm. Sup., 42 (2009), 517-529. Zbl1194.14016MR2543331DOI10.24033/asens.2101
  2. DIMCA, A., Singularity and Topology of Hypersurfaces, Universitext, Springer, 1992. MR1194180DOI10.1007/978-1-4612-4404-2
  3. DIMCA, A., Sheaves in Topology, Universitext, Springer, 2004. MR2050072DOI10.1007/978-3-642-18868-8
  4. FLENNER, H. - O'CARROLL, L. - VOGEL, W., Joins and Intersections, Monographs in Mathematics, Springer, 1999. MR1724388DOI10.1007/978-3-662-03817-8
  5. FULTON, W., Intersection Theory, Ergebnisse Math. Grenzg., 2 (Springer, 1984). Zbl0541.14005MR732620DOI10.1007/978-3-662-02421-8
  6. FULTON, W., Young Tableaux With Applications to Representation Theory and Geometry, London Mathematical Society Student Texts35, Cambridge University Press, 1977. Zbl0878.14034MR1464693
  7. GREEN, M., Griffiths' infinitesimal invariant and the Abel-Jacobi map, J. Differ. Geom., 29 (1989), 545-555. Zbl0692.14003MR992330
  8. GRIFFITHS, P., On the periods of certain rational integrals, I, II, Ann. of Math., 90 (1969), 460-541. Zbl0215.08103MR260733DOI10.2307/1970746
  9. HARTSHORNE, R., Algebraic Geometry, Graduate Texts in Math., 52 (Springer, 1977). MR463157
  10. LAZARSFELD, R., Positivity in Algebraic Geometry I. Classical Setting: Line Bundles and Linear Series, Springer, 2004. Zbl1093.14501MR2095471DOI10.1007/978-3-642-18808-4
  11. NORI, M., Algebraic cycles and Hodge theoretic connectivity, Invent. Math., 111 (1993), 349-373. Zbl0822.14008MR1198814DOI10.1007/BF01231292
  12. SHIODA, T., Algebraic cycles on a certain hypersurface, in Algebraic Geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math., 1016 (Springer, 1983), 271-294. MR726430DOI10.1007/BFb0099967
  13. SPANIER, E. H., Algebraic Topology, Mc Graw-Hill Series in Higher Mathematics (1966). MR210112
  14. VOISIN, C., Hodge Theory and Complex Algebraic Geometry I, Cambridge Studies in Advanced Mathematics76, Cambridge University Press (2002). Zbl1005.14002MR1967689DOI10.1017/CBO9780511615344
  15. VOISIN, C., Hodge Theory and Complex Algebraic Geometry II, Cambridge Studies in Advanced Mathematics77, Cambridge University Press (2003). Zbl1032.14002MR1997577DOI10.1017/CBO9780511615177

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.