Monodromy of a family of hypersurfaces

Vincenzo Di Gennaro; Davide Franco

Annales scientifiques de l'École Normale Supérieure (2009)

  • Volume: 42, Issue: 3, page 517-529
  • ISSN: 0012-9593

Abstract

top
Let Y be an ( m + 1 ) -dimensional irreducible smooth complex projective variety embedded in a projective space. Let Z be a closed subscheme of Y , and δ be a positive integer such that Z , Y ( δ ) is generated by global sections. Fix an integer d δ + 1 , and assume the general divisor X | H 0 ( Y , Z , Y ( d ) ) | is smooth. Denote by H m ( X ; ) Z van the quotient of H m ( X ; ) by the cohomology of Y and also by the cycle classes of the irreducible components of dimension m of Z . In the present paper we prove that the monodromy representation on H m ( X ; ) Z van for the family of smooth divisors X | H 0 ( Y , Z , Y ( d ) ) | is irreducible.

How to cite

top

Di Gennaro, Vincenzo, and Franco, Davide. "Monodromy of a family of hypersurfaces." Annales scientifiques de l'École Normale Supérieure 42.3 (2009): 517-529. <http://eudml.org/doc/272156>.

@article{DiGennaro2009,
abstract = {Let $Y$ be an $(m+1)$-dimensional irreducible smooth complex projective variety embedded in a projective space. Let $Z$ be a closed subscheme of $Y$, and $\delta $ be a positive integer such that $\mathcal \{I\}_\{Z,Y\}(\delta )$ is generated by global sections. Fix an integer $d\ge \delta +1$, and assume the general divisor $X \in |H^0(Y,\mathcal \{I\}_\{Z,Y\}(d))|$ is smooth. Denote by $H^m(X;\mathbb \{Q\})_\{\perp Z\}^\{\mathrm \{van\}\}$ the quotient of $H^m(X;\mathbb \{Q\})$ by the cohomology of $Y$ and also by the cycle classes of the irreducible components of dimension $m$ of $Z$. In the present paper we prove that the monodromy representation on $H^m(X;\mathbb \{Q\})_\{\perp Z\}^\{\mathrm \{van\}\}$ for the family of smooth divisors $X \in |H^0(Y,\mathcal \{I\}_\{Z,Y\}(d))|$ is irreducible.},
author = {Di Gennaro, Vincenzo, Franco, Davide},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {complex projective variety; linear system; Lefschetz theory; monodromy; isolated singularity; Milnor fibration},
language = {eng},
number = {3},
pages = {517-529},
publisher = {Société mathématique de France},
title = {Monodromy of a family of hypersurfaces},
url = {http://eudml.org/doc/272156},
volume = {42},
year = {2009},
}

TY - JOUR
AU - Di Gennaro, Vincenzo
AU - Franco, Davide
TI - Monodromy of a family of hypersurfaces
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 3
SP - 517
EP - 529
AB - Let $Y$ be an $(m+1)$-dimensional irreducible smooth complex projective variety embedded in a projective space. Let $Z$ be a closed subscheme of $Y$, and $\delta $ be a positive integer such that $\mathcal {I}_{Z,Y}(\delta )$ is generated by global sections. Fix an integer $d\ge \delta +1$, and assume the general divisor $X \in |H^0(Y,\mathcal {I}_{Z,Y}(d))|$ is smooth. Denote by $H^m(X;\mathbb {Q})_{\perp Z}^{\mathrm {van}}$ the quotient of $H^m(X;\mathbb {Q})$ by the cohomology of $Y$ and also by the cycle classes of the irreducible components of dimension $m$ of $Z$. In the present paper we prove that the monodromy representation on $H^m(X;\mathbb {Q})_{\perp Z}^{\mathrm {van}}$ for the family of smooth divisors $X \in |H^0(Y,\mathcal {I}_{Z,Y}(d))|$ is irreducible.
LA - eng
KW - complex projective variety; linear system; Lefschetz theory; monodromy; isolated singularity; Milnor fibration
UR - http://eudml.org/doc/272156
ER -

References

top
  1. [1] E. Arbarello, M. Cornalba, P. A. Griffiths & J. Harris, Geometry of algebraic curves. Vol. I, Grund. Math. Wiss. 267, Springer, 1985. Zbl0559.14017
  2. [2] V. Di Gennaro & D. Franco, Factoriality and Néron-Severi groups, Commun. Contemp. Math.10 (2008), 745–764. Zbl1156.14006MR2446897
  3. [3] A. Dimca, Sheaves in topology, Universitext, Springer, 2004. Zbl1043.14003MR2050072
  4. [4] H. Flenner, L. O’Carroll & W. Vogel, Joins and intersections, Monographs in Mathematics, Springer, 1999. Zbl0939.14003MR1724388
  5. [5] W. Fulton, Intersection theory, Ergebnisse Math. Grenzg. 2, Springer, 1984. Zbl0541.14005MR732620
  6. [6] R. Hartshorne, Algebraic geometry, Graduate Texts in Math. 52, Springer, 1977. Zbl0367.14001MR463157
  7. [7] K. Lamotke, The topology of complex projective varieties after S. Lefschetz, Topology20 (1981), 15–51. Zbl0445.14010MR592569
  8. [8] E. J. N. Looijenga, Isolated singular points on complete intersections, London Mathematical Society Lecture Note Series 77, Cambridge University Press, 1984. Zbl0552.14002MR747303
  9. [9] A. Otwinowska & M. Saito, Monodromy of a family of hypersurfaces containing a given subvariety, Ann. Sci. École Norm. Sup.38 (2005), 365–386. Zbl1086.14010MR2166338
  10. [10] A. N. Parshin & I. R. Shafarevich (éds.), Algebraic geometry. III, Encyclopaedia of Mathematical Sciences 36, Springer, 1998. Zbl0886.14001MR1602371
  11. [11] E. H. Spanier, Algebraic topology, McGraw-Hill Book Co., 1966. Zbl0145.43303MR210112
  12. [12] J. H. M. Steenbrink, On the Picard group of certain smooth surfaces in weighted projective spaces, in Algebraic geometry (La Rábida, 1981), Lecture Notes in Math. 961, Springer, 1982, 302–313. Zbl0507.14025MR708341
  13. [13] C. Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés 10, Soc. Math. France, 2002. Zbl1032.14001MR1988456

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.