Monodromy of a family of hypersurfaces

Vincenzo Di Gennaro; Davide Franco

Annales scientifiques de l'École Normale Supérieure (2009)

  • Volume: 42, Issue: 3, page 517-529
  • ISSN: 0012-9593

Abstract

top
Let Y be an ( m + 1 ) -dimensional irreducible smooth complex projective variety embedded in a projective space. Let Z be a closed subscheme of Y , and δ be a positive integer such that Z , Y ( δ ) is generated by global sections. Fix an integer d δ + 1 , and assume the general divisor X | H 0 ( Y , Z , Y ( d ) ) | is smooth. Denote by H m ( X ; ) Z van the quotient of H m ( X ; ) by the cohomology of Y and also by the cycle classes of the irreducible components of dimension m of Z . In the present paper we prove that the monodromy representation on H m ( X ; ) Z van for the family of smooth divisors X | H 0 ( Y , Z , Y ( d ) ) | is irreducible.

How to cite

top

Di Gennaro, Vincenzo, and Franco, Davide. "Monodromy of a family of hypersurfaces." Annales scientifiques de l'École Normale Supérieure 42.3 (2009): 517-529. <http://eudml.org/doc/272156>.

@article{DiGennaro2009,
abstract = {Let $Y$ be an $(m+1)$-dimensional irreducible smooth complex projective variety embedded in a projective space. Let $Z$ be a closed subscheme of $Y$, and $\delta $ be a positive integer such that $\mathcal \{I\}_\{Z,Y\}(\delta )$ is generated by global sections. Fix an integer $d\ge \delta +1$, and assume the general divisor $X \in |H^0(Y,\mathcal \{I\}_\{Z,Y\}(d))|$ is smooth. Denote by $H^m(X;\mathbb \{Q\})_\{\perp Z\}^\{\mathrm \{van\}\}$ the quotient of $H^m(X;\mathbb \{Q\})$ by the cohomology of $Y$ and also by the cycle classes of the irreducible components of dimension $m$ of $Z$. In the present paper we prove that the monodromy representation on $H^m(X;\mathbb \{Q\})_\{\perp Z\}^\{\mathrm \{van\}\}$ for the family of smooth divisors $X \in |H^0(Y,\mathcal \{I\}_\{Z,Y\}(d))|$ is irreducible.},
author = {Di Gennaro, Vincenzo, Franco, Davide},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {complex projective variety; linear system; Lefschetz theory; monodromy; isolated singularity; Milnor fibration},
language = {eng},
number = {3},
pages = {517-529},
publisher = {Société mathématique de France},
title = {Monodromy of a family of hypersurfaces},
url = {http://eudml.org/doc/272156},
volume = {42},
year = {2009},
}

TY - JOUR
AU - Di Gennaro, Vincenzo
AU - Franco, Davide
TI - Monodromy of a family of hypersurfaces
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 3
SP - 517
EP - 529
AB - Let $Y$ be an $(m+1)$-dimensional irreducible smooth complex projective variety embedded in a projective space. Let $Z$ be a closed subscheme of $Y$, and $\delta $ be a positive integer such that $\mathcal {I}_{Z,Y}(\delta )$ is generated by global sections. Fix an integer $d\ge \delta +1$, and assume the general divisor $X \in |H^0(Y,\mathcal {I}_{Z,Y}(d))|$ is smooth. Denote by $H^m(X;\mathbb {Q})_{\perp Z}^{\mathrm {van}}$ the quotient of $H^m(X;\mathbb {Q})$ by the cohomology of $Y$ and also by the cycle classes of the irreducible components of dimension $m$ of $Z$. In the present paper we prove that the monodromy representation on $H^m(X;\mathbb {Q})_{\perp Z}^{\mathrm {van}}$ for the family of smooth divisors $X \in |H^0(Y,\mathcal {I}_{Z,Y}(d))|$ is irreducible.
LA - eng
KW - complex projective variety; linear system; Lefschetz theory; monodromy; isolated singularity; Milnor fibration
UR - http://eudml.org/doc/272156
ER -

References

top
  1. [1] E. Arbarello, M. Cornalba, P. A. Griffiths & J. Harris, Geometry of algebraic curves. Vol. I, Grund. Math. Wiss. 267, Springer, 1985. Zbl0559.14017
  2. [2] V. Di Gennaro & D. Franco, Factoriality and Néron-Severi groups, Commun. Contemp. Math.10 (2008), 745–764. Zbl1156.14006MR2446897
  3. [3] A. Dimca, Sheaves in topology, Universitext, Springer, 2004. Zbl1043.14003MR2050072
  4. [4] H. Flenner, L. O’Carroll & W. Vogel, Joins and intersections, Monographs in Mathematics, Springer, 1999. Zbl0939.14003MR1724388
  5. [5] W. Fulton, Intersection theory, Ergebnisse Math. Grenzg. 2, Springer, 1984. Zbl0541.14005MR732620
  6. [6] R. Hartshorne, Algebraic geometry, Graduate Texts in Math. 52, Springer, 1977. Zbl0367.14001MR463157
  7. [7] K. Lamotke, The topology of complex projective varieties after S. Lefschetz, Topology20 (1981), 15–51. Zbl0445.14010MR592569
  8. [8] E. J. N. Looijenga, Isolated singular points on complete intersections, London Mathematical Society Lecture Note Series 77, Cambridge University Press, 1984. Zbl0552.14002MR747303
  9. [9] A. Otwinowska & M. Saito, Monodromy of a family of hypersurfaces containing a given subvariety, Ann. Sci. École Norm. Sup.38 (2005), 365–386. Zbl1086.14010MR2166338
  10. [10] A. N. Parshin & I. R. Shafarevich (éds.), Algebraic geometry. III, Encyclopaedia of Mathematical Sciences 36, Springer, 1998. Zbl0886.14001MR1602371
  11. [11] E. H. Spanier, Algebraic topology, McGraw-Hill Book Co., 1966. Zbl0145.43303MR210112
  12. [12] J. H. M. Steenbrink, On the Picard group of certain smooth surfaces in weighted projective spaces, in Algebraic geometry (La Rábida, 1981), Lecture Notes in Math. 961, Springer, 1982, 302–313. Zbl0507.14025MR708341
  13. [13] C. Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés 10, Soc. Math. France, 2002. Zbl1032.14001MR1988456

NotesEmbed ?

top

You must be logged in to post comments.