Asymptotic Behaviour of Solutions to a Nonlinear Third Order P.D.E. Modeling Physical Phenomena

Salvatore Rionero

Bollettino dell'Unione Matematica Italiana (2012)

  • Volume: 5, Issue: 3, page 451-468
  • ISSN: 0392-4041

Abstract

top
The longtime behaviour of the solutions to the initial boundary value problem (1.1)-(1.3) modeling various physical phenomena, either in the autonomous case or in the nonautonomous case, is studied. Conditions guaranteeing ultimately boundedness and conditions guaranteeing nonlinear asymptotic global stability of the null solution are obtained. Boundary conditions, different from (1.2)1-(1.2)2, are also considered (Section 9).

How to cite

top

Rionero, Salvatore. "Asymptotic Behaviour of Solutions to a Nonlinear Third Order P.D.E. Modeling Physical Phenomena." Bollettino dell'Unione Matematica Italiana 5.3 (2012): 451-468. <http://eudml.org/doc/290957>.

@article{Rionero2012,
abstract = {The longtime behaviour of the solutions to the initial boundary value problem (1.1)-(1.3) modeling various physical phenomena, either in the autonomous case or in the nonautonomous case, is studied. Conditions guaranteeing ultimately boundedness and conditions guaranteeing nonlinear asymptotic global stability of the null solution are obtained. Boundary conditions, different from (1.2)1-(1.2)2, are also considered (Section 9).},
author = {Rionero, Salvatore},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {451-468},
publisher = {Unione Matematica Italiana},
title = {Asymptotic Behaviour of Solutions to a Nonlinear Third Order P.D.E. Modeling Physical Phenomena},
url = {http://eudml.org/doc/290957},
volume = {5},
year = {2012},
}

TY - JOUR
AU - Rionero, Salvatore
TI - Asymptotic Behaviour of Solutions to a Nonlinear Third Order P.D.E. Modeling Physical Phenomena
JO - Bollettino dell'Unione Matematica Italiana
DA - 2012/10//
PB - Unione Matematica Italiana
VL - 5
IS - 3
SP - 451
EP - 468
AB - The longtime behaviour of the solutions to the initial boundary value problem (1.1)-(1.3) modeling various physical phenomena, either in the autonomous case or in the nonautonomous case, is studied. Conditions guaranteeing ultimately boundedness and conditions guaranteeing nonlinear asymptotic global stability of the null solution are obtained. Boundary conditions, different from (1.2)1-(1.2)2, are also considered (Section 9).
LA - eng
UR - http://eudml.org/doc/290957
ER -

References

top
  1. MARCATI, P., Abstract stability theory and applications to hyperbolic equations with time dependent dissipative force fields. Comp. and Math. with Appl., 12A (1986), 541. Zbl0604.35049MR841985
  2. MARCATI, P., Stability for second order abstract evolution equations. Nonlinear Anal. Theory, Math. Appl., 8, n. 3 (1984), 237. Zbl0541.35007MR738009DOI10.1016/0362-546X(84)90046-4
  3. BARONE, A. - PATERNÓ, G., Physics and Applications of the Josephson Effect. Wiley-Interscience, New York (1982). 
  4. JOSEPHSON, B. D., Possible new effects in superconductive tunneling. Phys. Lett.1 (1962), 251-253, The discovery of tunneling supercurrents, Rev. Mod. Phys B, 46 (1974), 251-254 and the references therein. 1447, (2000). Zbl0103.23703
  5. LOMDHAL, P. S. - SOERSEN, O. H. - CHRISTIANSEN, P. L., Soliton Excitations in Josephson Tunnel Junctions. Phys. Rev. B25 (1982), 5737-5748. 
  6. PARMENTIER, R. D., Fluxons in Long Josephson Junctions. In: Solitons in Action Proceedings of a workshop sponsored by the Mathematics Division, Army Research Office held at Redstone Arsenal, October 26-27, 1977 (Eds Karl Lonngren and Alwyn Scott). Academic Press, New York, (1978). MR641555
  7. MORRO, A. - PAYNE, L. E. - STRAUGHAN, B., Decay, growth, continuous dependence and uniqueness results in generalized heat conductions theories, Appl. Anal., 38, n. 4 (1990), 231-243. Zbl0694.35007MR1116182DOI10.1080/00036819008839964
  8. LAMB, H., Hydrodynamics, Cambridge University Press, Cambridge (1959). MR1317348
  9. NARDINI, R., Soluzione di un problema al contorno della magneto-idrodinamica, Ann. Mat. Pura Appl., 35 (1953), 269-290 (in italian). Zbl0051.23801MR63932DOI10.1007/BF02415273
  10. JOSEPH, D. D. - RENARDY, M. - SAUT, J. C., Hyperbolicity and change of type in the flow of viscoelastic fluids, Arch. Rational Mech. Anal., 87 (1985), 213-251. Zbl0572.76011MR768067DOI10.1007/BF00250725
  11. MORRISON, J. A., Wave propagations in rods of Voigt material and visco-elastic materials with three-parameters models, Quart. Appl. Math., 14 (1956), 153-169. Zbl0071.39902MR78848DOI10.1090/qam/78848
  12. RENNO, P., On some viscoelastic models, Atti Acc. Lincei Rend. Fis., 75 (1983), 1-10. Zbl0606.73034MR816808
  13. D'ACUNTO, B. - D'ANNA, A., Stability for a third order Sine-Gordon equation, Rend. Math. Serie VII, 18 (1998), 347-365. Zbl0921.35019MR1659822
  14. D'ANNA, A. - FIORE, G., Stability and attractivity for a class of dissipative phenomena. Rend. Met. Serie VII, vol 21 (2000), 191-206. Zbl1052.35036MR1884942
  15. D'ANNA, A. - FIORE, G., Global Stability properties for a class of dissipative phenomena via one or several Liapunov functionals, Nonlinear Dyn. Sys. Theory, 5 (2005), 9-38. Zbl1076.35015MR2163509
  16. D'ANNA, A. - FIORE, G., Stability Properties for Some Non-autonomous Dissipative Phenomena Proved by Families of Liapunov functionals, Nonlinear Dyn. Sys. Theory, 9, n. 3 (2009), 249-262. Zbl1195.35047MR2895584
  17. RIONERO, S., A rigorous reduction of the L 2 -stability of the solutions to a nonlinear binary reaction-diffusion system of O.D.Es to the stability of the solutions to a linear binary system of O.D.Es. J.M.A.A., 310 (2006), 372-392. MR2227911DOI10.1016/j.jmaa.2005.05.059
  18. FLAVIN, J. N. - RIONERO, S., Cross-diffusion influence on the nonlinear L 2 -stability analysis for a Lotka-Volterra reaction-diffusion system of P.D.Es., IMA J.Appl. Math., 72, n. 5 (2007), 540-555. Zbl1160.35032MR2361568DOI10.1093/imamat/hxm026
  19. MERKIN, D. R., Introduction to the theory of stability. Springer text in Appl. Math V. 24 (1997). MR1418401
  20. FLAVIN, J. N. - RIONERO, S., Qualitative estimates for Partial Differential Equations: an introduction. Boca Raton, Florida: CRC Press, (1996). Zbl0862.35001MR1396085
  21. RIONERO, S., Stability-Instability criteria for non-autonomous systems, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei, s. 9, Mat. Appl., 20, n. 4 (2009), 347- 367. Zbl1188.34067MR2550850DOI10.4171/RLM/551
  22. RIONERO, S., On the nonlinear stability of nonautonomous binary systems. Nonlinear Analysis: Theory, Methods and Applications (2011). Zbl1251.37026MR2870922DOI10.1016/j.na.2011.10.032
  23. ZHENG, S., Nonlinear Evolution Equations. Monographs and Surveys in Pure Applied Mathematics, 133, Chapman-Hall/CRC, (2004). MR2088362DOI10.1201/9780203492222

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.