-stability of the solutions to a nonlinear binary reaction-diffusion system of P.D.E.s
- Volume: 16, Issue: 4, page 227-238
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topRionero, Salvatore. "$L^{2}$-stability of the solutions to a nonlinear binary reaction-diffusion system of P.D.E.s." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 16.4 (2005): 227-238. <http://eudml.org/doc/252453>.
@article{Rionero2005,
abstract = {The $L^\{2\}$-stability (instability) of a binary nonlinear reaction diffusion system of P.D.E.s - either under Dirichlet or Neumann boundary data - is considered. Conditions allowing the reduction to a stability (instability) problem for a linear binary system of O.D.E.s are furnished. A peculiar Liapunov functional $V$ linked (together with the time derivative along the solutions) by direct simple relations to the eigenvalues, is used.},
author = {Rionero, Salvatore},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Nonlinear stability; Lyapunov direct method; Reaction-diffusion system},
language = {eng},
month = {12},
number = {4},
pages = {227-238},
publisher = {Accademia Nazionale dei Lincei},
title = {$L^\{2\}$-stability of the solutions to a nonlinear binary reaction-diffusion system of P.D.E.s},
url = {http://eudml.org/doc/252453},
volume = {16},
year = {2005},
}
TY - JOUR
AU - Rionero, Salvatore
TI - $L^{2}$-stability of the solutions to a nonlinear binary reaction-diffusion system of P.D.E.s
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2005/12//
PB - Accademia Nazionale dei Lincei
VL - 16
IS - 4
SP - 227
EP - 238
AB - The $L^{2}$-stability (instability) of a binary nonlinear reaction diffusion system of P.D.E.s - either under Dirichlet or Neumann boundary data - is considered. Conditions allowing the reduction to a stability (instability) problem for a linear binary system of O.D.E.s are furnished. A peculiar Liapunov functional $V$ linked (together with the time derivative along the solutions) by direct simple relations to the eigenvalues, is used.
LA - eng
KW - Nonlinear stability; Lyapunov direct method; Reaction-diffusion system
UR - http://eudml.org/doc/252453
ER -
References
top- OKUBO, A. - LEVIN, S.A., Diffusion and ecological problems: modern prospectives. 2nd ed., Interdisciplinary Applied Mathematics, vol. 14, Springer-Verlag, New York2001, 488 pp. Zbl1027.92022MR1895041
- MURRAY, J.D., Mathematical Biology. I. An Introduction. 3rd éd., Interdisciplinary Applied Mathematics, vol. 17, Springer-Verlag, New York2002, 600 pp. Zbl1006.92001MR1908418
- MURRAY, J.D., Mathematical Biology. II. Spatial Models and Biomedical Applications. 3rd ed., Inter-disciplinary Applied Mathematics, vol. 18, Springer-Verlag, New York2003, 811 pp. Zbl1006.92002MR1952568
- STRAUGHAN, B., The energy method, stability, and nonlinear convection. 2nd ed., Appl. Math. Sci. Ser. vol. 91, Springer-Verlag, New York-London2004, 240 pp. Zbl1032.76001MR2003826
- CANTRELL, R.S. - COSNER, C., Spatial Ecology via Reaction-Diffusion Equations. Wiley Series in Mathematical and Computational Biology, Wiley, Chichester2003, 411 pp. Zbl1059.92051MR2191264DOI10.1002/0470871296
- FLAVIN, J.N. - RIONERO, S., Qualitative estimates for partial differential equations: an introduction. CRC Press, Boca Raton, Florida1996, 360 pp. Zbl0862.35001MR1396085
- RIONERO, S., A nonlinear -stability analysis for two-species population dynamics with dispersal. Mathematical Biosciences and Engineering, vol. 3, n. 1, 2006, 189-204. Zbl1090.92039MR2192134DOI10.3934/mbe.2006.3.189
- RIONERO, S., A rigorous reduction of the -stability of the solutions to a nonlinear binary reaction-diffusion system of P.D.E.s, Journal of Mathematical Analysis and Applications, to appear. Zbl1099.35041MR2255006
- RIONERO, S., Asymptotic properties of solutions to nonlinear possibly degenerated parabolic equations in unbounded domains. Mathematics and Mechanics of Solids, vol. 10, 2005, 541-557. Zbl1085.35082MR2167055DOI10.1177/1081286505036418
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.