An approximation theorem in Musielak-Orlicz-Sobolev spaces
A. Benkirane; J. Douieb; M. Ould Mohamedhen Val
Commentationes Mathematicae (2011)
- Volume: 51, Issue: 1
- ISSN: 2080-1211
Access Full Article
topAbstract
topHow to cite
topA. Benkirane, J. Douieb, and M. Ould Mohamedhen Val. "An approximation theorem in Musielak-Orlicz-Sobolev spaces." Commentationes Mathematicae 51.1 (2011): null. <http://eudml.org/doc/291866>.
@article{A2011,
abstract = {In this paper we prove the uniform boundedness of the operators of convolution in the Musielak-Orlicz spaces and the density of $C_0^\infty (\mathbb \{R\}^n)$ in the Musielak-Orlicz-Sobolev spaces by assuming a condition of Log-Hölder type of continuity.},
author = {A. Benkirane, J. Douieb, M. Ould Mohamedhen Val},
journal = {Commentationes Mathematicae},
keywords = {Generalized Orlicz-Sobolev spaces; Modular spaces; Musielak-Orlicz function; approximation theorem},
language = {eng},
number = {1},
pages = {null},
title = {An approximation theorem in Musielak-Orlicz-Sobolev spaces},
url = {http://eudml.org/doc/291866},
volume = {51},
year = {2011},
}
TY - JOUR
AU - A. Benkirane
AU - J. Douieb
AU - M. Ould Mohamedhen Val
TI - An approximation theorem in Musielak-Orlicz-Sobolev spaces
JO - Commentationes Mathematicae
PY - 2011
VL - 51
IS - 1
SP - null
AB - In this paper we prove the uniform boundedness of the operators of convolution in the Musielak-Orlicz spaces and the density of $C_0^\infty (\mathbb {R}^n)$ in the Musielak-Orlicz-Sobolev spaces by assuming a condition of Log-Hölder type of continuity.
LA - eng
KW - Generalized Orlicz-Sobolev spaces; Modular spaces; Musielak-Orlicz function; approximation theorem
UR - http://eudml.org/doc/291866
ER -
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.