Some approximation results in Musielak-Orlicz spaces

Ahmed Youssfi; Youssef Ahmida

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 2, page 453-471
  • ISSN: 0011-4642

Abstract

top
We prove the continuity in norm of the translation operator in the Musielak-Orlicz L M spaces. An application to the convergence in norm of approximate identities is given, whereby we prove density results of the smooth functions in L M , in both the modular and norm topologies. These density results are then applied to obtain basic topological properties.

How to cite

top

Youssfi, Ahmed, and Ahmida, Youssef. "Some approximation results in Musielak-Orlicz spaces." Czechoslovak Mathematical Journal 70.2 (2020): 453-471. <http://eudml.org/doc/297057>.

@article{Youssfi2020,
abstract = {We prove the continuity in norm of the translation operator in the Musielak-Orlicz $L_\{M\}$ spaces. An application to the convergence in norm of approximate identities is given, whereby we prove density results of the smooth functions in $L_\{M\}$, in both the modular and norm topologies. These density results are then applied to obtain basic topological properties.},
author = {Youssfi, Ahmed, Ahmida, Youssef},
journal = {Czechoslovak Mathematical Journal},
keywords = {approximate identity; Musielak-Orlicz space; density of smooth functions},
language = {eng},
number = {2},
pages = {453-471},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some approximation results in Musielak-Orlicz spaces},
url = {http://eudml.org/doc/297057},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Youssfi, Ahmed
AU - Ahmida, Youssef
TI - Some approximation results in Musielak-Orlicz spaces
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 2
SP - 453
EP - 471
AB - We prove the continuity in norm of the translation operator in the Musielak-Orlicz $L_{M}$ spaces. An application to the convergence in norm of approximate identities is given, whereby we prove density results of the smooth functions in $L_{M}$, in both the modular and norm topologies. These density results are then applied to obtain basic topological properties.
LA - eng
KW - approximate identity; Musielak-Orlicz space; density of smooth functions
UR - http://eudml.org/doc/297057
ER -

References

top
  1. Adams, R. A., Fournier, J. J. F., 10.1016/S0079-8169(13)62896-2, Pure and Applied Mathematics 140, Academic Press, New York (2003). (2003) Zbl1098.46001MR2424078DOI10.1016/S0079-8169(13)62896-2
  2. Benkirane, A., Douieb, J., Val, M. Ould Mohamedhen, 10.14708/cm.v51i1.5313, Commentat. Math. 51 (2011), 109-120. (2011) Zbl1294.46025MR2849685DOI10.14708/cm.v51i1.5313
  3. Benkirane, A., Val, M. Ould Mohamedhen, Some approximation properties in Musielak-Orlicz-Sobolev spaces, Thai J. Math. 10 (2012), 371-381. (2012) Zbl1264.46024MR3001860
  4. Bennett, C., Sharpley, R., 10.1016/S0079-8169(13)62909-8, Pure and Applied Mathematics 129, Academic Press, Boston (1988). (1988) Zbl0647.46057MR0928802DOI10.1016/S0079-8169(13)62909-8
  5. Cruz-Uribe, D., Fiorenza, A., 10.1002/mana.200410479, Math. Nachr. 280 (2007), 256-270. (2007) Zbl1178.42022MR2292148DOI10.1002/mana.200410479
  6. Diening, L., Harjulehto, P., Hästö, P., Růžička, M., 10.1007/978-3-642-18363-8, Lecture Notes in Mathematics 2017, Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542DOI10.1007/978-3-642-18363-8
  7. Hudzik, H., A generalization of Sobolev spaces. II, Funct. Approximatio, Comment. Math. 3 (1976), 77-85. (1976) Zbl0355.46011MR0467279
  8. Kamińska, A., 10.14708/cm.v22i2.6021, Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 22 (1981), 245-255. (1981) Zbl0504.46024MR0641438DOI10.14708/cm.v22i2.6021
  9. Kamińska, A., Some convexity properties of Musielak-Orlicz spaces of Bochner type, Rend. Circ. Mat. Palermo, II. Ser. Suppl. 10 (1985), 63-73. (1985) Zbl0609.46015MR0894273
  10. Kamińska, A., Hudzik, H., 10.14708/cm.v21i1.5965, Commentat. Math. 21 (1980), 81-88. (1980) Zbl0436.46022MR0577673DOI10.14708/cm.v21i1.5965
  11. Kamińska, A., Kubiak, D., 10.1016/j.jmaa.2015.02.035, J. Math. Anal. Appl. 427 (2015), 873-898. (2015) Zbl1325.46012MR3323013DOI10.1016/j.jmaa.2015.02.035
  12. Kováčik, O., Rákosník, J., 10.21136/CMJ.1991.102493, Czech. Math. J. 41 (1991), 592-618. (1991) Zbl0784.46029MR1134951DOI10.21136/CMJ.1991.102493
  13. Krasnosel'skiĭ, M. A., Rutitskiĭ, J. B., Convex Functions and Orlicz Spaces, P. Noordhoff, Groningen (1961). (1961) Zbl0095.09103MR0126722
  14. Kufner, A., John, O., Fučík, S., Function Spaces, Monographs and Textbooks on Mechanics of Solids and Fluids. Mechanics: Analysis, Noordhoff International Publishing, Leyden; Academia, Prague (1977). (1977) Zbl0364.46022MR0482102
  15. Musielak, J., 10.1007/BFb0072210, Lecture Notes in Mathematics 1034, Springer, Berlin (1983). (1983) Zbl0557.46020MR0724434DOI10.1007/BFb0072210
  16. Nakano, H., Modulared Semi-Ordered Linear Spaces, Tokyo Math. Book Series 1, Maruzen, Tokyo (1950). (1950) Zbl0041.23401MR0038565
  17. Orlicz, W., 10.4064/sm-3-1-200-211, Studia Math. German 3 (1931), 200-211. (1931) Zbl0003.25203DOI10.4064/sm-3-1-200-211

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.