Solution semigroup and invariant manifolds for functional equations with infinite delay
Mathematica Bohemica (1993)
- Volume: 118, Issue: 2, page 175-193
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topPetzeltová, Hana. "Solution semigroup and invariant manifolds for functional equations with infinite delay." Mathematica Bohemica 118.2 (1993): 175-193. <http://eudml.org/doc/29199>.
@article{Petzeltová1993,
abstract = {It is proved that parabolic equations with infinite delay generate $C_0$-semigroup on the space of initial conditions, such that local stable and unstable manifolds can be constructed for a fully nonlinear problems with help of usual methods of the theory of parabolic equations.},
author = {Petzeltová, Hana},
journal = {Mathematica Bohemica},
keywords = {nonlinear diffusion-type equations with infinite delay; existence of stable and unstable manifolds; parabolic functional equation; infinite delay; stable and unstable manifolds; nonlinear diffusion-type equations with infinite delay; existence of stable and unstable manifolds},
language = {eng},
number = {2},
pages = {175-193},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solution semigroup and invariant manifolds for functional equations with infinite delay},
url = {http://eudml.org/doc/29199},
volume = {118},
year = {1993},
}
TY - JOUR
AU - Petzeltová, Hana
TI - Solution semigroup and invariant manifolds for functional equations with infinite delay
JO - Mathematica Bohemica
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 118
IS - 2
SP - 175
EP - 193
AB - It is proved that parabolic equations with infinite delay generate $C_0$-semigroup on the space of initial conditions, such that local stable and unstable manifolds can be constructed for a fully nonlinear problems with help of usual methods of the theory of parabolic equations.
LA - eng
KW - nonlinear diffusion-type equations with infinite delay; existence of stable and unstable manifolds; parabolic functional equation; infinite delay; stable and unstable manifolds; nonlinear diffusion-type equations with infinite delay; existence of stable and unstable manifolds
UR - http://eudml.org/doc/29199
ER -
References
top- G. Da Prato A. Lunardi, 10.1007/BF00251457, Arch. Rat. Mech. Anal. 101 (1988), 115-141. (1988) MR0921935DOI10.1007/BF00251457
- G. Da Prato A. Lunardi, 10.1007/BF01761464, Ann. Mat. Pura Appl. 150 (1988), 67-117. (1988) MR0946030DOI10.1007/BF01761464
- J. K. Hale J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21 (1978), 11-41. (1978) MR0492721
- D. Henry, 10.1007/BFb0089647, Lecture Notes in Math., vol. 840, Springer Verlag, 1981. (1981) Zbl0456.35001MR0610244DOI10.1007/BFb0089647
- S. O. Londen J. A. Nohel, Nonlinear Volterra integrodifferential equation occuring in heat flow, J. Int. Equations 6(1984), 11-50. (1984) MR0727934
- A. Lunardi, 10.1002/mana.19851210120, Math. Nachr. 121 (1985), 295-318. (1985) Zbl0568.47035MR0809327DOI10.1002/mana.19851210120
- A. Lunardi, 10.1137/0521066, SIAM J. Math. Anal. 21 (1990), 1213-1224. (1990) MR1062400DOI10.1137/0521066
- J. Milota, Asymptotic behaviour of parabolic equations with infinite delay, Volterra Integrodiff. Eqs. and Appl., Pitman Research Notes in Math. 190, 1989, pp. 295-305. (190,) MR1018887
- J. Milota, Stability and saddle-point property for a linear autonomous functional parabolic equations, Comm. Math. Univ. Carolinae 27 (1986), 87-101. (1986) MR0843423
- H. Petzeltová J. Milota, 10.1080/01630568708816261, Numer. Funct. Anal. and Optimiz. 9 (1987), 779-807. (1987) MR0910855DOI10.1080/01630568708816261
- E. Sinestrari, 10.1016/0022-247X(85)90353-1, J. Math. An. Appl. 107 (1985), 16-66. (1985) MR0786012DOI10.1016/0022-247X(85)90353-1
- C. C. Travis G. F. Webb, 10.1090/S0002-9947-1974-0382808-3, TAMS 200 (1974), 395-418. (1974) MR0382808DOI10.1090/S0002-9947-1974-0382808-3
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.