Local center manifold for parabolic equations with infinite delay

Hana Petzeltová

Mathematica Bohemica (1994)

  • Volume: 119, Issue: 3, page 285-304
  • ISSN: 0862-7959

Abstract

top
The existence and attractivity of a local center manifold for fully nonlinear parabolic equation with infinite delay is proved with help of a solutions semigroup constructed on the space of initial conditions. The result is applied to the stability problem for a parabolic integrodifferential equation.

How to cite

top

Petzeltová, Hana. "Local center manifold for parabolic equations with infinite delay." Mathematica Bohemica 119.3 (1994): 285-304. <http://eudml.org/doc/29317>.

@article{Petzeltová1994,
abstract = {The existence and attractivity of a local center manifold for fully nonlinear parabolic equation with infinite delay is proved with help of a solutions semigroup constructed on the space of initial conditions. The result is applied to the stability problem for a parabolic integrodifferential equation.},
author = {Petzeltová, Hana},
journal = {Mathematica Bohemica},
keywords = {parabolic integrodifferential equations; invariant manifolds; functional equations; analytic semigroup; Banach space; resolvent operator; interpolation spaces; center manifold; parabolic functional equation; infinite delay; solution semigroup; parabolic integrodifferential equations; invariant manifolds; functional equations; analytic semigroup; Banach space; resolvent operator; interpolation spaces; center manifold},
language = {eng},
number = {3},
pages = {285-304},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Local center manifold for parabolic equations with infinite delay},
url = {http://eudml.org/doc/29317},
volume = {119},
year = {1994},
}

TY - JOUR
AU - Petzeltová, Hana
TI - Local center manifold for parabolic equations with infinite delay
JO - Mathematica Bohemica
PY - 1994
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 119
IS - 3
SP - 285
EP - 304
AB - The existence and attractivity of a local center manifold for fully nonlinear parabolic equation with infinite delay is proved with help of a solutions semigroup constructed on the space of initial conditions. The result is applied to the stability problem for a parabolic integrodifferential equation.
LA - eng
KW - parabolic integrodifferential equations; invariant manifolds; functional equations; analytic semigroup; Banach space; resolvent operator; interpolation spaces; center manifold; parabolic functional equation; infinite delay; solution semigroup; parabolic integrodifferential equations; invariant manifolds; functional equations; analytic semigroup; Banach space; resolvent operator; interpolation spaces; center manifold
UR - http://eudml.org/doc/29317
ER -

References

top
  1. P. Acquistаpаce B. Tereni, Hölder classes with boundaгy conditions as interpolation spaces, Math Z. 195 (1987), 451-471. (195) MR0900340
  2. G. Dа Prаto A. Lunаrdi, 10.1007/BF00251457, Arch. Rat. Mech. Anal. 101 (1988), 115-141. (1988) MR0921935DOI10.1007/BF00251457
  3. J. K. Hаle J. Kаto, Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21 (1978), 11-41. (1978) MR0492721
  4. D. Henry, 10.1007/BFb0089647, Lecture Notes in Math. 840, Springer Verlag, 1981. (1981) Zbl0456.35001MR0610244DOI10.1007/BFb0089647
  5. S. O. Londen J. A. Nohel, Nonlinear Volterra integrodifferential equation occuring in heat flow, Ј. Int. Equations 6 (1984), 11-50. (1984) MR0727934
  6. A. Lunаrdi, 10.1002/mana.19851210120, Math. Nachr. 121 (1985), 295-318. (1985) MR0809327DOI10.1002/mana.19851210120
  7. A. Lunаrdi, Stability and local invariant manifolds in fully nonlinear parabolic equations, Preprint. MR1270699
  8. J. Milotа, Asymptotic behaviour of parabolic equations with infinite delay, Volterra Integrodiff. Eqs. and Appl., Pitman Research Notes in Math. 190 (1989), 295-305. (190) MR1018887
  9. H. Petzeltová, Solution semigroup and invariant manifolds for functional equations with infìnite delay, Mathematica Bohemica 118 (1993), no. 2, 175-193. (1993) MR1223484
  10. H. Petzeltová J. Milotа, 10.1080/01630568708816261, Numer. Funct. Anal. and Optimiz. 9 (1987), 779-807. (1987) DOI10.1080/01630568708816261
  11. G. Simonett, Zentrumsmannigfaltigkeiten für quasilineare parabolische Gleichungen, Thesis. 
  12. E. Sinestrаri, On the abstract Cauchy problem of parabolic type in the spaces of continuous functions, Ј. Math. And Appl. 107(1985), 16-66. (1985) 
  13. A. Vаnderbаuwhede, 10.1007/978-3-322-96657-5_4, Dynamics reported 2 (1989), 89-169. (1989) MR1000977DOI10.1007/978-3-322-96657-5_4
  14. A. Vanderbauwhede G. Iooss, 10.1007/978-3-642-61243-5_4, Dynamics reported 1 (1992), 125-163. (1992) MR1153030DOI10.1007/978-3-642-61243-5_4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.