Local center manifold for parabolic equations with infinite delay
Mathematica Bohemica (1994)
- Volume: 119, Issue: 3, page 285-304
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topPetzeltová, Hana. "Local center manifold for parabolic equations with infinite delay." Mathematica Bohemica 119.3 (1994): 285-304. <http://eudml.org/doc/29317>.
@article{Petzeltová1994,
abstract = {The existence and attractivity of a local center manifold for fully nonlinear parabolic equation with infinite delay is proved with help of a solutions semigroup constructed on the space of initial conditions. The result is applied to the stability problem for a parabolic integrodifferential equation.},
author = {Petzeltová, Hana},
journal = {Mathematica Bohemica},
keywords = {parabolic integrodifferential equations; invariant manifolds; functional equations; analytic semigroup; Banach space; resolvent operator; interpolation spaces; center manifold; parabolic functional equation; infinite delay; solution semigroup; parabolic integrodifferential equations; invariant manifolds; functional equations; analytic semigroup; Banach space; resolvent operator; interpolation spaces; center manifold},
language = {eng},
number = {3},
pages = {285-304},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Local center manifold for parabolic equations with infinite delay},
url = {http://eudml.org/doc/29317},
volume = {119},
year = {1994},
}
TY - JOUR
AU - Petzeltová, Hana
TI - Local center manifold for parabolic equations with infinite delay
JO - Mathematica Bohemica
PY - 1994
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 119
IS - 3
SP - 285
EP - 304
AB - The existence and attractivity of a local center manifold for fully nonlinear parabolic equation with infinite delay is proved with help of a solutions semigroup constructed on the space of initial conditions. The result is applied to the stability problem for a parabolic integrodifferential equation.
LA - eng
KW - parabolic integrodifferential equations; invariant manifolds; functional equations; analytic semigroup; Banach space; resolvent operator; interpolation spaces; center manifold; parabolic functional equation; infinite delay; solution semigroup; parabolic integrodifferential equations; invariant manifolds; functional equations; analytic semigroup; Banach space; resolvent operator; interpolation spaces; center manifold
UR - http://eudml.org/doc/29317
ER -
References
top- P. Acquistаpаce B. Tereni, Hölder classes with boundaгy conditions as interpolation spaces, Math Z. 195 (1987), 451-471. (195) MR0900340
- G. Dа Prаto A. Lunаrdi, 10.1007/BF00251457, Arch. Rat. Mech. Anal. 101 (1988), 115-141. (1988) MR0921935DOI10.1007/BF00251457
- J. K. Hаle J. Kаto, Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21 (1978), 11-41. (1978) MR0492721
- D. Henry, 10.1007/BFb0089647, Lecture Notes in Math. 840, Springer Verlag, 1981. (1981) Zbl0456.35001MR0610244DOI10.1007/BFb0089647
- S. O. Londen J. A. Nohel, Nonlinear Volterra integrodifferential equation occuring in heat flow, Ј. Int. Equations 6 (1984), 11-50. (1984) MR0727934
- A. Lunаrdi, 10.1002/mana.19851210120, Math. Nachr. 121 (1985), 295-318. (1985) MR0809327DOI10.1002/mana.19851210120
- A. Lunаrdi, Stability and local invariant manifolds in fully nonlinear parabolic equations, Preprint. MR1270699
- J. Milotа, Asymptotic behaviour of parabolic equations with infinite delay, Volterra Integrodiff. Eqs. and Appl., Pitman Research Notes in Math. 190 (1989), 295-305. (190) MR1018887
- H. Petzeltová, Solution semigroup and invariant manifolds for functional equations with infìnite delay, Mathematica Bohemica 118 (1993), no. 2, 175-193. (1993) MR1223484
- H. Petzeltová J. Milotа, 10.1080/01630568708816261, Numer. Funct. Anal. and Optimiz. 9 (1987), 779-807. (1987) DOI10.1080/01630568708816261
- G. Simonett, Zentrumsmannigfaltigkeiten für quasilineare parabolische Gleichungen, Thesis.
- E. Sinestrаri, On the abstract Cauchy problem of parabolic type in the spaces of continuous functions, Ј. Math. And Appl. 107(1985), 16-66. (1985)
- A. Vаnderbаuwhede, 10.1007/978-3-322-96657-5_4, Dynamics reported 2 (1989), 89-169. (1989) MR1000977DOI10.1007/978-3-322-96657-5_4
- A. Vanderbauwhede G. Iooss, 10.1007/978-3-642-61243-5_4, Dynamics reported 1 (1992), 125-163. (1992) MR1153030DOI10.1007/978-3-642-61243-5_4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.