A sharpening of a discrete analog of Wirtinger's and isoperimetric inequalities

Pavel Pech

Mathematica Bohemica (1992)

  • Volume: 117, Issue: 4, page 425-428
  • ISSN: 0862-7959

Abstract

top
A sharpening of a discrete case of Wirtinger's inequality is given. It is then used to sharpen the isoperimetric unequality for polygons.

How to cite

top

Pech, Pavel. "A sharpening of a discrete analog of Wirtinger's and isoperimetric inequalities." Mathematica Bohemica 117.4 (1992): 425-428. <http://eudml.org/doc/29210>.

@article{Pech1992,
abstract = {A sharpening of a discrete case of Wirtinger's inequality is given. It is then used to sharpen the isoperimetric unequality for polygons.},
author = {Pech, Pavel},
journal = {Mathematica Bohemica},
keywords = {closed $n$-gons; inequalities; Wirtinger’s inequality; trigonometric polynomials; closed -gons; inequalities},
language = {eng},
number = {4},
pages = {425-428},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A sharpening of a discrete analog of Wirtinger's and isoperimetric inequalities},
url = {http://eudml.org/doc/29210},
volume = {117},
year = {1992},
}

TY - JOUR
AU - Pech, Pavel
TI - A sharpening of a discrete analog of Wirtinger's and isoperimetric inequalities
JO - Mathematica Bohemica
PY - 1992
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 117
IS - 4
SP - 425
EP - 428
AB - A sharpening of a discrete case of Wirtinger's inequality is given. It is then used to sharpen the isoperimetric unequality for polygons.
LA - eng
KW - closed $n$-gons; inequalities; Wirtinger’s inequality; trigonometric polynomials; closed -gons; inequalities
UR - http://eudml.org/doc/29210
ER -

References

top
  1. L. Boček, Isoperimetrische Ungleichungen für räumliche Kurven und Polygone, Čas. pro pěst. mat. 104 (1979), 86-92. (1979) MR0523575
  2. K. Fan O. Taussky J. Todd, Discrete analogs of inequalities of Wirtinger, Monatsh. Math. 50 (1955), 73-90. (1955) MR0070676
  3. Z. Nádeník, Die Verchärfung einer Ungleichung von Frobenius für den gemischten Flächeninhalt der konvexen ebenen Bereiche, Čas. pro pěst, mat. 90 (1965), 220-225. (1965) MR0192411
  4. J. Novotná, A sharpening of discrete analogues of Wirtinger's inequality, Čas. pro pěst. mat. 108 (1983), 70-77. (1983) Zbl0521.26008MR0694141
  5. I. J. Schoenberg, 10.1080/00029890.1950.11999555, Amer. Math. Monthly 57 (1950), 390-404. (1950) Zbl0038.35602MR0036332DOI10.1080/00029890.1950.11999555

NotesEmbed ?

top

You must be logged in to post comments.