A sharpening of a discrete analog of Wirtinger's and isoperimetric inequalities

Pavel Pech

Mathematica Bohemica (1992)

  • Volume: 117, Issue: 4, page 425-428
  • ISSN: 0862-7959

Abstract

top
A sharpening of a discrete case of Wirtinger's inequality is given. It is then used to sharpen the isoperimetric unequality for polygons.

How to cite

top

Pech, Pavel. "A sharpening of a discrete analog of Wirtinger's and isoperimetric inequalities." Mathematica Bohemica 117.4 (1992): 425-428. <http://eudml.org/doc/29210>.

@article{Pech1992,
abstract = {A sharpening of a discrete case of Wirtinger's inequality is given. It is then used to sharpen the isoperimetric unequality for polygons.},
author = {Pech, Pavel},
journal = {Mathematica Bohemica},
keywords = {closed $n$-gons; inequalities; Wirtinger’s inequality; trigonometric polynomials; closed -gons; inequalities},
language = {eng},
number = {4},
pages = {425-428},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A sharpening of a discrete analog of Wirtinger's and isoperimetric inequalities},
url = {http://eudml.org/doc/29210},
volume = {117},
year = {1992},
}

TY - JOUR
AU - Pech, Pavel
TI - A sharpening of a discrete analog of Wirtinger's and isoperimetric inequalities
JO - Mathematica Bohemica
PY - 1992
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 117
IS - 4
SP - 425
EP - 428
AB - A sharpening of a discrete case of Wirtinger's inequality is given. It is then used to sharpen the isoperimetric unequality for polygons.
LA - eng
KW - closed $n$-gons; inequalities; Wirtinger’s inequality; trigonometric polynomials; closed -gons; inequalities
UR - http://eudml.org/doc/29210
ER -

References

top
  1. L. Boček, Isoperimetrische Ungleichungen für räumliche Kurven und Polygone, Čas. pro pěst. mat. 104 (1979), 86-92. (1979) MR0523575
  2. K. Fan O. Taussky J. Todd, Discrete analogs of inequalities of Wirtinger, Monatsh. Math. 50 (1955), 73-90. (1955) MR0070676
  3. Z. Nádeník, Die Verchärfung einer Ungleichung von Frobenius für den gemischten Flächeninhalt der konvexen ebenen Bereiche, Čas. pro pěst, mat. 90 (1965), 220-225. (1965) MR0192411
  4. J. Novotná, A sharpening of discrete analogues of Wirtinger's inequality, Čas. pro pěst. mat. 108 (1983), 70-77. (1983) Zbl0521.26008MR0694141
  5. I. J. Schoenberg, 10.1080/00029890.1950.11999555, Amer. Math. Monthly 57 (1950), 390-404. (1950) Zbl0038.35602MR0036332DOI10.1080/00029890.1950.11999555

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.