Extending Peano derivatives

Hajrudin Fejzić; Jan Mařík; Clifford E. Weil

Mathematica Bohemica (1994)

  • Volume: 119, Issue: 4, page 387-406
  • ISSN: 0862-7959

Abstract

top
Let H [ 0 , 1 ] be a closed set, k a positive integer and f a function defined on H so that the k -th Peano derivative relative to H exists. The major result of this paper is that if H has finite Denjoy index, then f has an extension, F , to [ 0 , 1 ] which is k times Peano differentiable on [ 0 , 1 ] with f i = F i on H for i = 1 , 2 , ... , k .

How to cite

top

Fejzić, Hajrudin, Mařík, Jan, and Weil, Clifford E.. "Extending Peano derivatives." Mathematica Bohemica 119.4 (1994): 387-406. <http://eudml.org/doc/29267>.

@article{Fejzić1994,
abstract = {Let $H\subset [0,1]$ be a closed set, $k$ a positive integer and $f$ a function defined on $H$ so that the $k$-th Peano derivative relative to $H$ exists. The major result of this paper is that if $H$ has finite Denjoy index, then $f$ has an extension, $F$, to $[0,1]$ which is $k$ times Peano differentiable on $[0,1]$ with $f_i=F_i$ on $H$ for $i=1,2,\ldots ,k$.},
author = {Fejzić, Hajrudin, Mařík, Jan, Weil, Clifford E.},
journal = {Mathematica Bohemica},
keywords = {Peano derivatives; Denjoy index; Peano derivatives; Denjoy index},
language = {eng},
number = {4},
pages = {387-406},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Extending Peano derivatives},
url = {http://eudml.org/doc/29267},
volume = {119},
year = {1994},
}

TY - JOUR
AU - Fejzić, Hajrudin
AU - Mařík, Jan
AU - Weil, Clifford E.
TI - Extending Peano derivatives
JO - Mathematica Bohemica
PY - 1994
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 119
IS - 4
SP - 387
EP - 406
AB - Let $H\subset [0,1]$ be a closed set, $k$ a positive integer and $f$ a function defined on $H$ so that the $k$-th Peano derivative relative to $H$ exists. The major result of this paper is that if $H$ has finite Denjoy index, then $f$ has an extension, $F$, to $[0,1]$ which is $k$ times Peano differentiable on $[0,1]$ with $f_i=F_i$ on $H$ for $i=1,2,\ldots ,k$.
LA - eng
KW - Peano derivatives; Denjoy index; Peano derivatives; Denjoy index
UR - http://eudml.org/doc/29267
ER -

References

top
  1. Z. Buczolich, 10.2307/44151957, Real Analysis Exch 14 (1988-89), 423-428. (1988) MR0995982DOI10.2307/44151957
  2. P. Bullen, 10.2307/44151693, Real Analysis Exch, 10 (1984-84), 85-144. (1984) MR0795610DOI10.2307/44151693
  3. A. Denjoy, 10.4064/fm-25-1-273-326, Fundamenta Mathematicae 25 (1935), 273-326. (1935) DOI10.4064/fm-25-1-273-326
  4. M. J. Evans C. E. Weil, Peano derivatives: A survey, Real Analysis Exch, 7(1981-82), 5-24. (1981) MR0646631
  5. H. Fejzić, 10.1090/S0002-9939-1993-1155596-8, Proc. Amer. Soc 119 (1993), no. 2, 599-609. (1993) MR1155596DOI10.1090/S0002-9939-1993-1155596-8
  6. H. Fejzić, The Peano derivatives, Doct. Dissertation. Michigan State University, 1992. (1992) 
  7. H. Fejzić, 10.4064/fm-143-1-55-74, Fundamenta Mathematicae 143 (1994), 55-74. (1994) MR1234991DOI10.4064/fm-143-1-55-74
  8. V. Jarník, Sur l'extension du domaine de definition des fonctions d'une variable, qui laisse intacte la derivabilite de la fonction, Bull international de l'Acad Sci de Boheme (1923). (1923) 
  9. J. Mařík, Derivatives and closed sets, Acta Math. Hung. 43 (1-2) (1984), 25-29. (1984) MR0731958
  10. G. Petruska, M. Laczkovich, 10.1007/BF01901760, Acta Math Acad Sci Hungar, 25 (1974), 189-212. (1974) Zbl0279.26003MR0379766DOI10.1007/BF01901760
  11. C. E. Weil, 10.2307/44153545, Real Analysis Exchange 9 (1983-1984), 354-365. (1983) MR0766061DOI10.2307/44153545

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.