Extending Peano derivatives
Hajrudin Fejzić; Jan Mařík; Clifford E. Weil
Mathematica Bohemica (1994)
- Volume: 119, Issue: 4, page 387-406
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topFejzić, Hajrudin, Mařík, Jan, and Weil, Clifford E.. "Extending Peano derivatives." Mathematica Bohemica 119.4 (1994): 387-406. <http://eudml.org/doc/29267>.
@article{Fejzić1994,
abstract = {Let $H\subset [0,1]$ be a closed set, $k$ a positive integer and $f$ a function defined on $H$ so that the $k$-th Peano derivative relative to $H$ exists. The major result of this paper is that if $H$ has finite Denjoy index, then $f$ has an extension, $F$, to $[0,1]$ which is $k$ times Peano differentiable on $[0,1]$ with $f_i=F_i$ on $H$ for $i=1,2,\ldots ,k$.},
author = {Fejzić, Hajrudin, Mařík, Jan, Weil, Clifford E.},
journal = {Mathematica Bohemica},
keywords = {Peano derivatives; Denjoy index; Peano derivatives; Denjoy index},
language = {eng},
number = {4},
pages = {387-406},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Extending Peano derivatives},
url = {http://eudml.org/doc/29267},
volume = {119},
year = {1994},
}
TY - JOUR
AU - Fejzić, Hajrudin
AU - Mařík, Jan
AU - Weil, Clifford E.
TI - Extending Peano derivatives
JO - Mathematica Bohemica
PY - 1994
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 119
IS - 4
SP - 387
EP - 406
AB - Let $H\subset [0,1]$ be a closed set, $k$ a positive integer and $f$ a function defined on $H$ so that the $k$-th Peano derivative relative to $H$ exists. The major result of this paper is that if $H$ has finite Denjoy index, then $f$ has an extension, $F$, to $[0,1]$ which is $k$ times Peano differentiable on $[0,1]$ with $f_i=F_i$ on $H$ for $i=1,2,\ldots ,k$.
LA - eng
KW - Peano derivatives; Denjoy index; Peano derivatives; Denjoy index
UR - http://eudml.org/doc/29267
ER -
References
top- Z. Buczolich, 10.2307/44151957, Real Analysis Exch 14 (1988-89), 423-428. (1988) MR0995982DOI10.2307/44151957
- P. Bullen, 10.2307/44151693, Real Analysis Exch, 10 (1984-84), 85-144. (1984) MR0795610DOI10.2307/44151693
- A. Denjoy, 10.4064/fm-25-1-273-326, Fundamenta Mathematicae 25 (1935), 273-326. (1935) DOI10.4064/fm-25-1-273-326
- M. J. Evans C. E. Weil, Peano derivatives: A survey, Real Analysis Exch, 7(1981-82), 5-24. (1981) MR0646631
- H. Fejzić, 10.1090/S0002-9939-1993-1155596-8, Proc. Amer. Soc 119 (1993), no. 2, 599-609. (1993) MR1155596DOI10.1090/S0002-9939-1993-1155596-8
- H. Fejzić, The Peano derivatives, Doct. Dissertation. Michigan State University, 1992. (1992)
- H. Fejzić, 10.4064/fm-143-1-55-74, Fundamenta Mathematicae 143 (1994), 55-74. (1994) MR1234991DOI10.4064/fm-143-1-55-74
- V. Jarník, Sur l'extension du domaine de definition des fonctions d'une variable, qui laisse intacte la derivabilite de la fonction, Bull international de l'Acad Sci de Boheme (1923). (1923)
- J. Mařík, Derivatives and closed sets, Acta Math. Hung. 43 (1-2) (1984), 25-29. (1984) MR0731958
- G. Petruska, M. Laczkovich, 10.1007/BF01901760, Acta Math Acad Sci Hungar, 25 (1974), 189-212. (1974) Zbl0279.26003MR0379766DOI10.1007/BF01901760
- C. E. Weil, 10.2307/44153545, Real Analysis Exchange 9 (1983-1984), 354-365. (1983) MR0766061DOI10.2307/44153545
Citations in EuDML Documents
top- Zoltán Buczolich, Clifford E. Weil, The non-coincidence of ordinary and Peano derivatives
- Hans Volkmer, Extending Peano derivatives: necessary and sufficient conditions
- Hajrudin Fejzić, Dan Rinne, Clifford E. Weil, Extending times differentiable functions of several variables
- Luděk Zajíček, On results of Jan Mařík in the theory of derivatives
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.