Extending times differentiable functions of several variables
Hajrudin Fejzić; Dan Rinne; Clifford E. Weil
Czechoslovak Mathematical Journal (1999)
- Volume: 49, Issue: 4, page 825-830
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFejzić, Hajrudin, Rinne, Dan, and Weil, Clifford E.. "Extending $n$ times differentiable functions of several variables." Czechoslovak Mathematical Journal 49.4 (1999): 825-830. <http://eudml.org/doc/30526>.
@article{Fejzić1999,
abstract = {It is shown that $n$ times Peano differentiable functions defined on a closed subset of $\mathbb \{R\}^m$ and satisfying a certain condition on that set can be extended to $n$ times Peano differentiable functions defined on $\mathbb \{R\}^m$ if and only if the $n$th order Peano derivatives are Baire class one functions.},
author = {Fejzić, Hajrudin, Rinne, Dan, Weil, Clifford E.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Peano differentiability; differentiable functions; Baire class one functions; extension},
language = {eng},
number = {4},
pages = {825-830},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Extending $n$ times differentiable functions of several variables},
url = {http://eudml.org/doc/30526},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Fejzić, Hajrudin
AU - Rinne, Dan
AU - Weil, Clifford E.
TI - Extending $n$ times differentiable functions of several variables
JO - Czechoslovak Mathematical Journal
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 49
IS - 4
SP - 825
EP - 830
AB - It is shown that $n$ times Peano differentiable functions defined on a closed subset of $\mathbb {R}^m$ and satisfying a certain condition on that set can be extended to $n$ times Peano differentiable functions defined on $\mathbb {R}^m$ if and only if the $n$th order Peano derivatives are Baire class one functions.
LA - eng
KW - Peano differentiability; differentiable functions; Baire class one functions; extension
UR - http://eudml.org/doc/30526
ER -
References
top- Extension of differentiable functions, Comment. Math. Univ. Carolin. 26 (1985), 597–609. (1985) MR0817830
- Extending Peano differentiable functions, Atti Sem. Mat. Fis. Univ. Modena 44 (1996), no. 2, 323–330. (1996) MR1428765
- Extending Peano derivatives, Math. Bohemica 119 (1994), 387–406. (1994) MR1316592
- Continuity properties of Peano derivatives in several variables, Real Analysis Exch. 21 (1995–96), 292–298. (1995–96) MR1377538
- Set Theory, Chelsea, 1962. (1962) MR0141601
- Sur l’extension du domaine de definition des fonctions d’une variable, qui laisse intacte la derivabitité de la fonction, Bull international de l’Acad Sci de Boheme (1923). (1923)
- 10.1007/BF01951320, Acta Math. Hungar. 43 (1984), 25–29. (1984) MR0731958DOI10.1007/BF01951320
- 10.1007/BF01901760, Acta Math. Acad Sci. Hungar. 25 (1974), 189–212. (1974) MR0379766DOI10.1007/BF01901760
- Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, NJ, USA, 1970. (1970) Zbl0207.13501MR0290095
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.