Discrete multivariate truncated distributions

T. Gerstenkorn

Mathematica Applicanda (1978)

  • Volume: 6, Issue: 12
  • ISSN: 1730-2668

Abstract

top
Let X(1),⋯,X(k),X(k+1) be random variables that take nonnegative integer values and let (∗) ∑(i,1,k+1)X(i)=n. The joint distribution of the first k variables is given by the probability function p(x(1),⋯,x(k))=P(X(1)=x(1),⋯,X(k)=x(k)). A truncation of the component X(i) of the vector X=(X(1),⋯,X(k)) is defined by the constraint b(i)≤X(i)≤n, where b(i) is a positive integer. The author obtains an expression for the probability function p∗(x(1),⋯,x(t),x(t+1),⋯,x(k)) of the vector X∗, which is obtained by truncating the first t components of the vector X (in view of (∗), the set of possible values of the remaining components also narrows). As an application he considers an urn scheme that reduces to a multivariate (in particular, truncated) Pólya distribution. This work supplements the author's previous paper

How to cite

top

T. Gerstenkorn. "Discrete multivariate truncated distributions." Mathematica Applicanda 6.12 (1978): null. <http://eudml.org/doc/292755>.

@article{T1978,
abstract = {Let X(1),⋯,X(k),X(k+1) be random variables that take nonnegative integer values and let (∗) ∑(i,1,k+1)X(i)=n. The joint distribution of the first k variables is given by the probability function p(x(1),⋯,x(k))=P(X(1)=x(1),⋯,X(k)=x(k)). A truncation of the component X(i) of the vector X=(X(1),⋯,X(k)) is defined by the constraint b(i)≤X(i)≤n, where b(i) is a positive integer. The author obtains an expression for the probability function p∗(x(1),⋯,x(t),x(t+1),⋯,x(k)) of the vector X∗, which is obtained by truncating the first t components of the vector X (in view of (∗), the set of possible values of the remaining components also narrows). As an application he considers an urn scheme that reduces to a multivariate (in particular, truncated) Pólya distribution. This work supplements the author's previous paper},
author = {T. Gerstenkorn},
journal = {Mathematica Applicanda},
keywords = {Exact distribution theory},
language = {eng},
number = {12},
pages = {null},
title = {Discrete multivariate truncated distributions},
url = {http://eudml.org/doc/292755},
volume = {6},
year = {1978},
}

TY - JOUR
AU - T. Gerstenkorn
TI - Discrete multivariate truncated distributions
JO - Mathematica Applicanda
PY - 1978
VL - 6
IS - 12
SP - null
AB - Let X(1),⋯,X(k),X(k+1) be random variables that take nonnegative integer values and let (∗) ∑(i,1,k+1)X(i)=n. The joint distribution of the first k variables is given by the probability function p(x(1),⋯,x(k))=P(X(1)=x(1),⋯,X(k)=x(k)). A truncation of the component X(i) of the vector X=(X(1),⋯,X(k)) is defined by the constraint b(i)≤X(i)≤n, where b(i) is a positive integer. The author obtains an expression for the probability function p∗(x(1),⋯,x(t),x(t+1),⋯,x(k)) of the vector X∗, which is obtained by truncating the first t components of the vector X (in view of (∗), the set of possible values of the remaining components also narrows). As an application he considers an urn scheme that reduces to a multivariate (in particular, truncated) Pólya distribution. This work supplements the author's previous paper
LA - eng
KW - Exact distribution theory
UR - http://eudml.org/doc/292755
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.